版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年寧夏回族自治區(qū)固原市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.A.
B.
C.-cotx+C
D.cotx+C
4.設(shè)函數(shù)f(x)=2sinx,則f(x)等于().
A.2sinxB.2cosxC.-2sinxD.-2cosx
5.
6.
7.函數(shù)z=x2-xy+y2+9x-6y+20有
A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1
8.
9.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
10.若,則()。A.-1B.0C.1D.不存在
11.設(shè)函數(shù)為().A.A.0B.1C.2D.不存在
12.
A.
B.
C.
D.
13.
14.
15.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
16.
17.
18.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
19.
20.A.-1
B.1
C.
D.2
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.
28.
29.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.
30.
31.
32.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。
33.
34.過坐標(biāo)原點(diǎn)且與平面3x-7y+5z-12=0平行的平面方程為_________.
35.設(shè)y=5+lnx,則dy=________。
36.曲線y=1-x-x3的拐點(diǎn)是__________。
37.設(shè)y=cosx,則dy=_________。
38.
39.
40.函數(shù)f(x)=xe-x的極大值點(diǎn)x=__________。
三、計(jì)算題(20題)41.
42.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
43.求曲線在點(diǎn)(1,3)處的切線方程.
44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
45.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
46.
47.證明:
48.將f(x)=e-2X展開為x的冪級數(shù).
49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
50.
51.求微分方程的通解.
52.
53.
54.
55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
56.
57.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
58.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
59.求微分方程y"-4y'+4y=e-2x的通解.
60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
四、解答題(10題)61.
62.
63.
64.證明:ex>1+x(x>0).
65.(本題滿分8分)
66.
67.
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.函數(shù)f(x)=xn(a≠0)的彈性函數(shù)為g(x)=_________.
六、解答題(0題)72.
參考答案
1.D解析:
2.A
3.C本題考查的知識點(diǎn)為不定積分基本公式.
4.B本題考查的知識點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f(x)=2(sinx)≈2cosx.
可知應(yīng)選B.
5.C解析:
6.A
7.D本題考查了函數(shù)的極值的知識點(diǎn)。
8.C
9.C
10.D不存在。
11.D本題考查的知識點(diǎn)為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
12.C本題考查的知識點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
13.B
14.D
15.C
16.B
17.C解析:
18.A本題考查的知識點(diǎn)為級數(shù)的絕對收斂與條件收斂。
由于的p級數(shù),可知為收斂級數(shù)。
可知收斂,所給級數(shù)絕對收斂,故應(yīng)選A。
19.D
20.A
21.
本題考查的知識點(diǎn)為可變上限積分的求導(dǎo).
22.1/6
23.124.由可變上限積分求導(dǎo)公式可知
25.7/5
26.33解析:
27.[*]
28.29.
本題考查的知識點(diǎn)為直線方程的求解.
由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).
由直線的點(diǎn)向式方程可知所求直線方程為
30.
31.
32.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。
33.
解析:
34.3x-7y+5z=0本題考查了平面方程的知識點(diǎn)。已知所求平面與3x-7y+5z-12=0平行,則其法向量為(3,-7,5),故所求方程為3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.
35.
36.(01)
37.-sinxdx
38.1/24
39.
40.1
41.
則
42.
列表:
說明
43.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
44.函數(shù)的定義域?yàn)?/p>
注意
45.由等價無窮小量的定義可知46.由一階線性微分方程通解公式有
47.
48.49.由二重積分物理意義知
50.
51.
52.
53.
54.
55.
56.
57.
58.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
59.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
60.
61.62.解D在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東酒店管理職業(yè)技術(shù)學(xué)院《食品微生物綜合實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東金融學(xué)院《公司金融含實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東建設(shè)職業(yè)技術(shù)學(xué)院《技術(shù)及應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東金融學(xué)院《小動物影像學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 網(wǎng)絡(luò)文明培訓(xùn)課件
- 《能源互聯(lián)網(wǎng)》課件
- 小班安全課件《狗狗來了》
- 廚具銷售培訓(xùn)課件
- 共青科技職業(yè)學(xué)院《現(xiàn)代基礎(chǔ)化學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛州師范高等??茖W(xué)?!督鹑诜ā?023-2024學(xué)年第一學(xué)期期末試卷
- 2025年初級會計(jì)職稱《經(jīng)濟(jì)法基礎(chǔ)》全真模擬及答案(解析3套)
- 2024年八年級班主任德育工作個人總結(jié)
- 《健康社區(qū)評價標(biāo)準(zhǔn)》
- 戶外市場研究報(bào)告-魔鏡洞察-202412
- 浙江省金華市金東區(qū)2023-2024學(xué)年九年級上學(xué)期語文期末試卷
- 【7地星球期末】安徽省合肥市包河區(qū)智育聯(lián)盟校2023-2024學(xué)年七年級上學(xué)期期末地理試題(含解析)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之2:“1至3章:范圍、術(shù)語和定義”(雷澤佳編制-2025B0)
- (2021)最高法民申5114號凱某建設(shè)工程合同糾紛案 指導(dǎo)
- 【9物(人)期末】安慶市宿松縣2023-2024學(xué)年九年級上學(xué)期期末考試物理試題
- 導(dǎo)航通信一體化考核試卷
- 甘肅省會寧二中2025屆高考仿真模擬數(shù)學(xué)試卷含解析
評論
0/150
提交評論