版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是定義域為的偶函數(shù),且在單調(diào)遞增,,則()A. B.C. D.2.設,,,則的大小關系是()A. B. C. D.3.已知函數(shù)的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.4.設是虛數(shù)單位,則()A. B. C. D.5.復數(shù)的虛部為()A.—1 B.—3 C.1 D.26.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.7.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.8.已知向量,,若,則()A. B. C.-8 D.89.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度10.《九章算術》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是()A. B. C. D.11.已知復數(shù)滿足,則()A. B. C. D.12.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).14.若函數(shù)滿足:①是偶函數(shù);②的圖象關于點對稱.則同時滿足①②的,的一組值可以分別是__________.15.下圖是一個算法流程圖,則輸出的S的值是______.16.各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.18.(12分)已知拋物線的焦點為,點在拋物線上,,直線過點,且與拋物線交于,兩點.(1)求拋物線的方程及點的坐標;(2)求的最大值.19.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若關于的不等式在上恒成立,求實數(shù)的取值范圍.21.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.22.(10分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大?。?)已知,設點是外一點,且,求平面四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據(jù)偶函數(shù)的性質(zhì),比較即可.【詳解】解:顯然,所以是定義域為的偶函數(shù),且在單調(diào)遞增,所以故選:C【點睛】本題考查對數(shù)的運算及偶函數(shù)的性質(zhì),是基礎題.2.A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、??碱}型.3.A【解析】
可將問題轉(zhuǎn)化,求直線關于直線的對稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結(jié)合圖像可知,即,故選:A【點睛】本題考查數(shù)形結(jié)合思想求解函數(shù)交點問題,導數(shù)研究函數(shù)增減性,找準臨界是解題的關鍵,屬于中檔題4.A【解析】
利用復數(shù)的乘法運算可求得結(jié)果.【詳解】由復數(shù)的乘法法則得.故選:A.【點睛】本題考查復數(shù)的乘法運算,考查計算能力,屬于基礎題.5.B【解析】
對復數(shù)進行化簡計算,得到答案.【詳解】所以的虛部為故選B項.【點睛】本題考查復數(shù)的計算,虛部的概念,屬于簡單題.6.A【解析】
先由題和拋物線的性質(zhì)求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關鍵,屬于中檔題.7.D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數(shù)取得最大值,最大值為3;當直線過點時,目標函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規(guī)劃.8.B【解析】
先求出向量,的坐標,然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.9.A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數(shù)的圖象與性質(zhì).【名師點睛】三角函數(shù)圖象變換方法:10.C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關鍵,著重考查了推理與運算能力.11.A【解析】
由復數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數(shù)的運算.屬于簡單題.12.A【解析】
將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數(shù)列的基本量計算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.192【解析】
根據(jù)題意,分步進行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數(shù)原理計算可得答案.【詳解】根據(jù)題意,分步進行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點睛】本題考查排列、組合的應用,涉及分步計數(shù)原理的應用,屬于基礎題.14.,【解析】
根據(jù)是偶函數(shù)和的圖象關于點對稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關于點對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎題.15.【解析】
根據(jù)流程圖,運行程序即得.【詳解】第一次運行,;第二次運行,;第三次運行,;第四次運行;所以輸出的S的值是.故答案為:【點睛】本題考查算法流程圖,是基礎題.16.【解析】
將已知由前n項和定義整理為,再由等比數(shù)列性質(zhì)求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關系求公比,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.;①;②.【解析】
根據(jù)題意列出方程組求解即可;①由原點為的垂心可得,軸,設,則,,根據(jù)求出線段的長;②設中點為,直線與橢圓交于,兩點,為的重心,則,設:,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據(jù)求解即可.【詳解】解:設焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設,則,,,解得:或,,不重合,故,,故;②設中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設:,,,則,,則,則:,,代入式子得:,設到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【點睛】本題考查橢圓的方程的知識點,結(jié)合運用向量,韋達定理和點到直線的距離的知識,屬于難題.18.(1),;(2)1.【解析】
(1)根據(jù)拋物線上的點到焦點和準線的距離相等,可得p值,即可求拋物線C的方程從而可得解;(2)設直線l的方程為:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,設A(x1,y1),B(x2,y2),則y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【詳解】(1)∵點F是拋物線y2=2px(p>0)的焦點,P(2,y0)是拋物線上一點,|PF|=3,∴23,解得:p=2,∴拋物線C的方程為y2=4x,∵點P(2,n)(n>0)在拋物線C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴設直線l的方程為:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0設A(x1,y1),B(x2,y2),則y1,y2是y2+4my﹣4=0的兩個不同實根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴當m時,取最大值1.【點睛】本題考查拋物線方程的求法,考查向量的數(shù)量積的最大值的求法,考查拋物線、直線方程、韋達定理等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題.19.(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由正方形的性質(zhì)得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結(jié)論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設平面的一個法向量,,,由,得,令,則,,.設平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.20.(1)或;(2).【解析】
(1)利用絕對值的幾何意義,將不等式,轉(zhuǎn)化為不等式或或求解.(2)根據(jù)-2在R上恒成立,由絕對值三角不等式求得的最小值即可.【詳解】(1)原不等式等價于或或,解得:或,∴不等式的解集為或.(2)因為-2在R上恒成立,而,所以,解得,所以實數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和不等式恒成立問題,還考查了運算求解的能力,屬于中檔題.21.(1)見解析;(2)【解析】
(1)由平面平面的性質(zhì)定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質(zhì)定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年文化旅游合資成立旅行社合同3篇
- 二零二四履行合同的動產(chǎn)融資擔保協(xié)議3篇
- 二零二五年酒店餐飲廚房經(jīng)理招聘與食品安全管理合同3篇
- 二零二五版智能倉儲管理系統(tǒng)租賃合同樣本2篇
- 二零二五版居間人保險期貨業(yè)務代理傭金合同2篇
- 2025年度鋁材產(chǎn)品出口退稅代理合同4篇
- 二零二五年度集裝箱式臨時餐廳租賃合同范本3篇
- 二零二五年度流產(chǎn)手術醫(yī)院管理責任合同4篇
- 2025年生態(tài)環(huán)境修復項目服務合同協(xié)議書:黃河流域治理合作3篇
- 二零二四年個人醫(yī)療貸款合同范本:健康保障金融3篇
- 預防艾滋病、梅毒和乙肝母嬰傳播轉(zhuǎn)介服務制度
- 集裝箱貨運碼頭的火災防范措施
- 《高速鐵路客運安全與應急處理》課程標準
- 23J916-1:住宅排氣道(一)
- 七年級數(shù)學上冊專題1.14數(shù)軸與絕對值綜合問題大題專練(重難點培優(yōu))-【講練課堂】2022-2023學年七年級數(shù)學上冊尖子生同步培優(yōu)題典(原卷版)【人教版】
- 社會保險職工增減表
- 小學語文低年級寫話 鴿子
- 仁愛英語八年級上冊詞匯練習題全冊
- 通用BIQS培訓資料課件
- 報價單模板及范文(通用十二篇)
- 鈑金部品質(zhì)控制計劃
評論
0/150
提交評論