版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年安徽省蕪湖市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.微分方程y'+x=0的通解()。A.
B.
C.
D.
3.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散4.設(shè)y=5x,則y'=A.A.5xln5
B.5x/ln5
C.x5x-1
D.5xlnx
5.
6.如圖所示兩楔形塊A、B自重不計(jì),二者接觸面光滑,受大小相等、方向相反且沿同一直線的兩個(gè)力的作用,則()。
A.A平衡,B不平衡B.A不平衡,B平衡C.A、B均不平衡D.A、B均平衡
7.
8.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x9.極限等于().A.A.e1/2B.eC.e2D.1
10.1954年,()提出了一個(gè)具有劃時(shí)代意義的概念——目標(biāo)管理。
A.西蒙B.德魯克C.梅奧D.亨利.甘特
11.
12.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
13.
14.
15.
16.A.2B.2xC.2yD.2x+2y
17.
18.
19.
20.A.-2(1-x2)2+C
B.2(1-x2)2+C
C.
D.
21.
22.
23.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
24.
25.在空間直角坐標(biāo)系中,方程2+3y2+3x2=1表示的曲面是().
A.球面
B.柱面
C.錐面
D.橢球面
26.力偶對(duì)剛體產(chǎn)生哪種運(yùn)動(dòng)效應(yīng)()。
A.既能使剛體轉(zhuǎn)動(dòng),又能使剛體移動(dòng)B.與力產(chǎn)生的運(yùn)動(dòng)效應(yīng)有時(shí)候相同,有時(shí)不同C.只能使剛體轉(zhuǎn)動(dòng)D.只能使剛體移動(dòng)27.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
28.微分方程y'=x的通解為A.A.2x2+C
B.x2+C
C.(1/2)x2+C
D.2x+C
29.A.A.yxy-1
B.yxy
C.xylnx
D.xylny
30.點(diǎn)M(4,-3,5)到Ox軸的距離d=()A.A.
B.
C.
D.
31.
32.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
33.
A.-1/2
B.0
C.1/2
D.1
34.
35.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)
36.
37.
38.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
39.若函數(shù)f(x)=5x,則f'(x)=
A.5x-1
B.x5x-1
C.5xln5
D.5x
40.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos1
41.
42.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
43.A.A.
B.
C.
D.
44.設(shè)y=x+sinx,則y=()A.A.sinx
B.x
C.x+cosx
D.1+cosx
45.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
46.
47.A.A.
B.
C.
D.
48.設(shè)函數(shù)Y=e-x,則Y'等于().A.A.-ex
B.ex
C.-e-xQ258
D.e-x
49.下列命題中正確的為
A.若x0為f(x)的極值點(diǎn),則必有f'(x0)=0
B.若f'(x)=0,則點(diǎn)x0必為f(x)的極值點(diǎn)
C.若f'(x0)≠0,則點(diǎn)x0必定不為f(x)的極值點(diǎn)
D.若f(x)在點(diǎn)x0處可導(dǎo),且點(diǎn)x0為f(x)的極值點(diǎn),則必有f'(x0)=0
50.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)二、填空題(20題)51.
52.設(shè)y=xe,則y'=_________.
53.設(shè)Ф(x)=∫0xln(1+t)dt,則Ф"(x)=________。
54.
55.曲線y=x3-3x2-x的拐點(diǎn)坐標(biāo)為_(kāi)___。
56.
57.
58.微分方程y+y=sinx的一個(gè)特解具有形式為
59.
60.
61.
62.
63.設(shè)y=sinx2,則dy=______.64.
65.
66.y=x3-27x+2在[1,2]上的最大值為_(kāi)_____.
67.
68.
69.
70.三、計(jì)算題(20題)71.
72.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
73.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
74.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).75.76.求曲線在點(diǎn)(1,3)處的切線方程.77.78.79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.80.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
81.求微分方程y"-4y'+4y=e-2x的通解.
82.
83.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.84.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
85.
86.證明:87.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.88.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
89.
90.求微分方程的通解.四、解答題(10題)91.
92.
93.求函數(shù)的二階導(dǎo)數(shù)y''94.求方程y''2y'+5y=ex的通解.
95.
96.97.求方程y''-2y'+5y=ex的通解.98.(本題滿分8分)
99.
100.
五、高等數(shù)學(xué)(0題)101.下列命題不正確的是()。
A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量
B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量
C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量
D.兩個(gè)有界變量之和仍為有界變量
六、解答題(0題)102.
參考答案
1.B
2.D所給方程為可分離變量方程.
3.D
4.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。
5.C解析:
6.C
7.B
8.D
9.C本題考查的知識(shí)點(diǎn)為重要極限公式.
由于,可知應(yīng)選C.
10.B解析:彼得德魯克最早提出了目標(biāo)管理的思想。
11.A解析:
12.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。
13.C
14.B
15.A解析:
16.A
17.B
18.A解析:
19.C
20.C
21.B
22.B解析:
23.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
24.C
25.D對(duì)照標(biāo)準(zhǔn)二次曲面的方程可知x2+3y2+3x2=1表示橢球面,故選D.
26.A
27.C
28.C
29.A
30.B
31.C
32.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=ln2,故f(x)=e2xln2.
33.B
34.D
35.A
36.D解析:
37.B
38.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
39.C本題考查了導(dǎo)數(shù)的基本公式的知識(shí)點(diǎn)。f'(x)=(5x)'=5xln5.
40.B本題考查的知識(shí)點(diǎn)為可變上限的積分.
由于,從而知
可知應(yīng)選B.
41.B
42.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
43.B
44.D
45.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
46.D
47.C
48.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.
由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知
可知應(yīng)選C.
49.D解析:由極值的必要條件知D正確。
y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。
y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點(diǎn),可知B不正確。因此選D。
50.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域?yàn)?-∞,+∞)。
當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
51.y=Cy=C解析:
52.(x+1)ex本題考查了函數(shù)導(dǎo)數(shù)的知識(shí)點(diǎn)。53.用變上限積分公式(∫0xf(t)dt)"=f(x),則Ф"(x)=ln(1+x),Ф"(x)=。
54.y=155.(1,-1)
56.y=-e-x+C
57.
解析:
58.
59.
60.1
61.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)
62.x/1=y/2=z/-163.2xcosx2dx本題考查的知識(shí)點(diǎn)為一元函數(shù)的微分.
由于y=sinx2,y'=cosx2·(x2)'=2xcosx2,故dy=y'dx=2xcosx2dx.
64.
65.5/266.-24本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),常可以利用導(dǎo)數(shù)判定f(x)在[a,b]上的最值:
(1)求出f'(x).
(2)求出f(x)在(a,b)內(nèi)的駐點(diǎn)x1,…,xk.
(3)比較f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值為f(x)在[a,b]上的最大(小)值,相應(yīng)的點(diǎn)x為f(x)的最大(小)值點(diǎn).
y=x3-27x+2,
則y'=3x2-27=3(x-3)(x+3),
令y'=0得y的駐點(diǎn)x1=-3,x2=3,可知這兩個(gè)駐點(diǎn)都不在(1,2)內(nèi).
由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值為-24.
本題考生中出現(xiàn)的錯(cuò)誤多為求出駐點(diǎn)x1=-3,x2=3之后,直接比較
f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,
得出y=x3-27x+2在[1,2]上的最大值為f(-3)=56.其錯(cuò)誤的原因是沒(méi)有判定駐點(diǎn)x1=-3,x2=3是否在給定的區(qū)間(1,2)內(nèi),這是值得考生注意的問(wèn)題.在模擬試題中兩次出現(xiàn)這類問(wèn)題,目的就是希望能引起考生的重視.
本題還可以采用下列解法:注意到y(tǒng)'=3(x-3)(x+3),在區(qū)間[1,2]上有y'<0,因此y為單調(diào)減少函數(shù)??芍?/p>
x=2為y的最小值點(diǎn),最小值為y|x=2=-44.
x=1為y的最大值點(diǎn),最大值為y|x=1=-24.
67.2x-4y+8z-7=0
68.
本題考查的知識(shí)點(diǎn)為直線的方程和直線與直線的關(guān)系.
由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為
69.3yx3y-13yx3y-1
解析:
70.71.由一階線性微分方程通解公式有
72.
73.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
74.
列表:
說(shuō)明
75.
76.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
77.
78.79.函數(shù)的定義域?yàn)?/p>
注意
80.
81.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
82.
83.
84.
85.
則
86.
87.由二重積分物理意義知
88.由等價(jià)無(wú)窮小量的定義可知
89.
90.
91.
92.證明
93.
94.
95.
96.
97.98.本
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024辣椒購(gòu)銷合同爭(zhēng)議的解決方式
- 2025年度智能化廚房設(shè)備采購(gòu)與安裝一體化合同4篇
- 2025年投標(biāo)采購(gòu)心得體會(huì)總結(jié)與合同管理創(chuàng)新合同3篇
- 個(gè)人房屋轉(zhuǎn)讓協(xié)議書合同范本
- 2024年駕校場(chǎng)地使用權(quán)益轉(zhuǎn)讓合同
- 2025年度煤礦廢棄資源煤矸石回收利用合同4篇
- 2025年度油氣田鉆井工程合同執(zhí)行監(jiān)督合同范本4篇
- 全新2025年度醫(yī)療設(shè)備采購(gòu)與安裝合同5篇
- 2025版污水處理廠智能化改造與運(yùn)營(yíng)維護(hù)協(xié)議3篇
- 2025版領(lǐng)隊(duì)與紀(jì)念品供應(yīng)商合作協(xié)議范本4篇
- 2024-2030年中國(guó)護(hù)肝解酒市場(chǎng)營(yíng)銷策略分析與未來(lái)銷售渠道調(diào)研研究報(bào)告
- 人教版高中數(shù)學(xué)必修二《第十章 概率》單元同步練習(xí)及答案
- 智慧校園信息化建設(shè)項(xiàng)目組織人員安排方案
- 浙教版七年級(jí)上冊(cè)數(shù)學(xué)第4章代數(shù)式單元測(cè)試卷(含答案)
- 一病一品成果護(hù)理匯報(bào)
- AQ-T 1009-2021礦山救護(hù)隊(duì)標(biāo)準(zhǔn)化考核規(guī)范
- 鹽酸??颂婺崤R床療效、不良反應(yīng)與藥代動(dòng)力學(xué)的相關(guān)性分析的開(kāi)題報(bào)告
- 消防設(shè)施安全檢查表
- 組合結(jié)構(gòu)設(shè)計(jì)原理 第2版 課件 第6、7章 鋼-混凝土組合梁、鋼-混凝土組合剪力墻
- 建筑公司資質(zhì)常識(shí)培訓(xùn)課件
- GB/T 26316-2023市場(chǎng)、民意和社會(huì)調(diào)查(包括洞察與數(shù)據(jù)分析)術(shù)語(yǔ)和服務(wù)要求
評(píng)論
0/150
提交評(píng)論