版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年安徽省銅陵市普通高校對口單招高等數(shù)學一自考預測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.
4.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面5.曲線y=lnx-2在點(e,-1)的切線方程為()A.A.
B.
C.
D.
6.函數(shù)f(x)在點x=x0處連續(xù)是f(x)在x0處可導的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件7.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
8.
9.設y=cos4x,則dy=()。A.
B.
C.
D.
10.微分方程(y)2=x的階數(shù)為()A.1B.2C.3D.411.微分方程y''-2y=ex的特解形式應設為()。A.y*=Aex
B.y*=Axex
C.y*=2ex
D.y*=ex
12.()。A.
B.
C.
D.
13.A.2B.1C.1/2D.-1
14.管理幅度是指一個主管能夠直接、有效地指揮下屬成員的數(shù)目,經(jīng)研究發(fā)現(xiàn),高層管理人員的管理幅度通常以()較為合適。
A.4~8人B.10~15人C.15~20人D.10~20人15.二次積分等于()A.A.
B.
C.
D.
16.()。A.e-2
B.e-2/3
C.e2/3
D.e2
17.
18.設Y=x2-2x+a,貝0點x=1()。A.為y的極大值點B.為y的極小值點C.不為y的極值點D.是否為y的極值點與a有關19.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
20.
二、填空題(20題)21.
22.
23.設,將此積分化為極坐標系下的積分,此時I=______.
24.
25.
26.設sinx為f(x)的原函數(shù),則f(x)=________。
27.
28.
29.
30.若=-2,則a=________。31.
32.
33.
34.35.=______.36.設y=f(x)在點x=0處可導,且x=0為f(x)的極值點,則f(0)=.37.設z=x2y+siny,=________。
38.
39.40.冪級數(shù)的收斂半徑為______.三、計算題(20題)41.當x一0時f(x)與sin2x是等價無窮小量,則42.證明:43.求微分方程的通解.44.45.求函數(shù)f(x)=x3-3x+1的單調區(qū)間和極值.46.
47.48.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質量m.
49.
50.求微分方程y"-4y'+4y=e-2x的通解.
51.求函數(shù)一的單調區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.52.將f(x)=e-2X展開為x的冪級數(shù).53.求函數(shù)y=x-lnx的單調區(qū)間,并求該曲線在點(1,1)處的切線l的方程.54.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.55.
56.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
57.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內,以線段AB為下底作內接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
58.
59.
60.求曲線在點(1,3)處的切線方程.四、解答題(10題)61.
62.
63.
64.
65.設z=f(xy,x2),其中f(x,y)有連續(xù)偏導數(shù),求66.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質量m.
67.
68.
69.
70.求曲線y=sinx、y=cosx、直線x=0在第一象限所圍圖形的面積A及該圖形繞x軸旋轉一周所得旋轉體的體積Vx。
五、高等數(shù)學(0題)71.求df(x)。六、解答題(0題)72.
參考答案
1.B
2.B
3.B
4.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。
5.D
6.B由可導與連續(xù)的關系:“可導必定連續(xù),連續(xù)不一定可導”可知,應選B。
7.D本題考查了函數(shù)的微分的知識點。
8.C
9.B
10.A
11.A由方程知,其特征方程為,r2-2=0,有兩個特征根r=±.又自由項f(x)=ex,λ=1不是特征根,故特解y*可設為Aex.
12.C由不定積分基本公式可知
13.A本題考查了函數(shù)的導數(shù)的知識點。
14.A解析:高層管理人員的管理幅度通常以4~8人較為合適。
15.A本題考查的知識點為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應選A.
16.B
17.D
18.B本題考查的知識點為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導數(shù),令偏導數(shù)等于零,確定函數(shù)的駐點.再依極值的充分條件來判定所求駐點是否為極值點。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點,故應選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點,因此選B。
19.C
20.B
21.本題考查的知識點為定積分運算.
22.00解析:
23.
24.
25.26.本題考查的知識點為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。
27.
28.
29.030.因為=a,所以a=-2。31.本題考查的知識點為重要極限公式。
32.
33.
34.35.本題考查的知識點為定積分的換元積分法。設t=x/2,則x=2t,dx=2dt.當x=0時,t=0;當x=π時,t=π/2。因此
36.0.
本題考查的知識點為極值的必要條件.
由于y=f(x)在點x=0可導,且x=0為f(x)的極值點,由極值的必要條件可知有f(0)=0.37.由于z=x2y+siny,可知。
38.2
39.
本題考查的知識點為重要極限公式.
40.0本題考查的知識點為冪級數(shù)的收斂半徑.
所給冪級數(shù)為不缺項情形
因此收斂半徑為0.41.由等價無窮小量的定義可知
42.
43.
44.
45.函數(shù)的定義域為
注意
46.
則
47.
48.由二重積分物理意義知
49.
50.解:原方程對應的齊次方程為y"-4y'+4y=0,
51.
列表:
說明
52.
53.
54.
55.
56.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
57.
58.59.由一階線性微分方程通解公式有
60.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或寫為2x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
61.
62.
63.
64.
65.本題考查的知識點為求抽象函數(shù)的偏導數(shù).
已知z:f(xy,x2),其中f(x,y)有連續(xù)偏導數(shù),求.通常有兩種
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度水利工程施工合同示范文本(含安全要求)4篇
- 2022版義務教育體育與健康課程標準試卷
- 2024配電室設備安裝及調試服務合同2篇
- 2024錨具供貨合同
- 2024年高端人才招聘居間服務合同書3篇
- 2025年0號柴油油品認證居間服務協(xié)議3篇
- 2025年度生態(tài)大門研發(fā)與安裝服務合同范本4篇
- 2025年度特色烹飪技藝傳承廚師雇傭協(xié)議4篇
- 深圳房地產(chǎn)中介培訓課件制作專業(yè)
- 2025年度旅游觀光車租賃合同標的轉讓協(xié)議3篇
- 全自動化學發(fā)光分析儀操作規(guī)程
- 北侖區(qū)建筑工程質量監(jiān)督站監(jiān)督告知書
- 深藍的故事(全3冊)
- GB/T 42461-2023信息安全技術網(wǎng)絡安全服務成本度量指南
- 職校開學第一課班會PPT
- 法考客觀題歷年真題及答案解析卷一(第1套)
- 央國企信創(chuàng)白皮書 -基于信創(chuàng)體系的數(shù)字化轉型
- GB/T 36964-2018軟件工程軟件開發(fā)成本度量規(guī)范
- 6第六章 社會契約論.電子教案教學課件
- 機加車間各崗位績效考核方案
- 小學數(shù)學專題講座:小學數(shù)學計算能力的培養(yǎng)課件
評論
0/150
提交評論