2022-2023學年廣東省佛山市城北中學數(shù)學九上期末考試模擬試題含解析_第1頁
2022-2023學年廣東省佛山市城北中學數(shù)學九上期末考試模擬試題含解析_第2頁
2022-2023學年廣東省佛山市城北中學數(shù)學九上期末考試模擬試題含解析_第3頁
2022-2023學年廣東省佛山市城北中學數(shù)學九上期末考試模擬試題含解析_第4頁
2022-2023學年廣東省佛山市城北中學數(shù)學九上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為()A.(﹣) B.(﹣) C.(﹣) D.(﹣)2.已知等腰三角形ABC中,腰AB=8,底BC=5,則這個三角形的周長為()A.21 B.20 C.19 D.183.如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點A按順時針方向旋轉到△AB1C1的位置,使得點C、A、B1在同一條直線上,那么旋轉角等于()A.55° B.70° C.125° D.145°4.拋物線y=ax2+bx+c(a≠1)如圖所示,下列結論:①abc<1;②點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2;③b2>(a+c)2;④2a﹣b<1.正確的結論有()A.4個 B.3個 C.2個 D.1個5.如圖是由6個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體()A.主視圖改變,左視圖改變 B.俯視圖不變,左視圖不變C.俯視圖改變,左視圖改變 D.主視圖改變,左視圖不變6.一元二次方程的根的情況為()A.沒有實數(shù)根B.只有一個實數(shù)根C.有兩個不相等的實數(shù)根D.有兩個相等的實數(shù)根7.下列方程是關于x的一元二次方程的是()A.a(chǎn)x2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+28.拋物線經(jīng)過平移得到拋物線,平移的方法是()A.向左平移1個單位,再向下平移2個單位B.向右平移1個單位,再向下平移2個單位C.向左平移1個單位,再向上平移2個單位D.向右平移1個單位,再向上平移2個單位9.已知點P(-1,4)在反比例函數(shù)的圖象上,則k的值是()A. B. C.4 D.-410.如圖,中,,在同一平面內(nèi),將繞點旋轉到的位置,使得,則旋轉角等于()A. B. C. D.11.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:112.若拋物線y=x2﹣3x+c與y軸的交點為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點為(﹣1,0),(3,0)C.當x=1時,y有最大值為0D.拋物線的對稱軸是直線x=二、填空題(每題4分,共24分)13.一元二次方程的兩個實數(shù)根為,則=_____.14.中國“一帶一路”給沿線國家和地區(qū)帶來很大的經(jīng)濟效益,沿線某地區(qū)居民2016年人均年收入20000元,到2018年人均年收入達到39200元.則該地區(qū)居民年人均收入平均增長率為_____.(用百分數(shù)表示)15.如圖,甲、乙兩樓之間的距離為30米,從甲樓測得乙樓頂仰角為α=30°,觀測乙樓的底部俯角為β=45°,乙樓的高h=_____米(結果保留整數(shù)≈1.7,≈1.4).16.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,若∠CDB=30°,⊙O的半徑為5cm則圓心O到弦CD的距離為_____.17.已知方程的兩實數(shù)根的平方和為,則k的值為____.18.如圖,AB是半圓O的直徑,D是半圓O上一點,C是的中點,連結AC交BD于點E,連結AD,若BE=4DE,CE=6,則AB的長為_____.三、解答題(共78分)19.(8分)已知二次函數(shù)的圖象頂點是,且經(jīng)過,求這個二次函數(shù)的表達式.20.(8分)如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為15m的住房墻,另外三邊用27m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長,寬分別為多少米時,豬舍面積為96m2?21.(8分)如圖,已知AB為⊙O的直徑,AD,BD是⊙O的弦,BC是⊙O的切線,切點為B,OC∥AD,BA,CD的延長線相交于點E.(1)求證:DC是⊙O的切線;(2)若AE=1,ED=3,求⊙O的半徑.22.(10分)先化簡,再求值:,其中.23.(10分)如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:(1)OA=_____,(2)作出∠AOB的平分線并在其上標出一個點Q,使.24.(10分)如圖,取△ABC的邊AB的中點O,以O為圓心AB為半徑作⊙O交BC于點D,過點D作⊙O的切線DE,若DE⊥AC,垂足為點E.(1)求證:△ABC是等腰三角形;(2)若DE=1,∠BAC=120°,則的長為.25.(12分)如圖,在邊長為的正方形中,點是射線上一動點(點不與點重合),連接,點是線段上一點,且,連接.求證:;求證:;直接寫出的最小值.26.如圖,在的正方形網(wǎng)格中,網(wǎng)線的交點稱為格點,點,,都是格點.已知每個小正方形的邊長為1.(1)畫出的外接圓,并直接寫出的半徑是多少.(2)連結,在網(wǎng)絡中畫出一個格點,使得是直角三角形,且點在上.

參考答案一、選擇題(每題4分,共48分)1、A【分析】直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(-,).故選A.【點睛】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.2、A【解析】試題分析:由于等腰三角形的兩腰相等,題目給出了腰和底,根據(jù)周長的定義即可求解:∵8+8+5=1.∴這個三角形的周長為1.故選A.考點:等腰三角形的性質(zhì).3、C【解析】試題分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°.∵點C、A、B1在同一條直線上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°.∴旋轉角等于125°.故選C.4、B【分析】利用拋物線開口方向得到a>1,利用拋物線的對稱軸在y軸的左側得到b>1,利用拋物線與y軸的交點在x軸下方得到c<1,則可對①進行判斷;通過對稱軸的位置,比較點(-3,y1)和點(1,y2)到對稱軸的距離的大小可對②進行判斷;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1時,a+b+c>1;x=-1時,a-b+c<1,則可對③進行判斷;利用和不等式的性質(zhì)可對④進行判斷.【詳解】∵拋物線開口向上,∴a>1,∵拋物線的對稱軸在y軸的左側,∴a、b同號,∴b>1,∵拋物線與y軸的交點在x軸下方,∴c<1,∴abc<1,所以①正確;∵拋物線的對稱軸為直線x=﹣,而﹣1<﹣<1,∴點(﹣3,y1)到對稱軸的距離比點(1,y2)到對稱軸的距離大,∴y1>y2,所以②正確;∵x=1時,y>1,即a+b+c>1,x=﹣1時,y<1,即a﹣b+c<1,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<1,∴b2>(a+c)2,所以③正確;∵﹣1<﹣<1,∴﹣2a<﹣b,∴2a﹣b>1,所以④錯誤.故選:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)a決定拋物線的開口方向和大小.當a>1時,拋物線向上開口;當a<1時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(1,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>1時,拋物線與x軸有2個交點;△=b2-4ac=1時,拋物線與x軸有1個交點;△=b2-4ac<1時,拋物線與x軸沒有交點.5、D【解析】試題分析:將正方體①移走前的主視圖正方形的個數(shù)為1,2,1;正方體①移走后的主視圖正方形的個數(shù)為1,2;發(fā)生改變.將正方體①移走前的左視圖正方形的個數(shù)為2,1,1;正方體①移走后的左視圖正方形的個數(shù)為2,1,1;沒有發(fā)生改變.將正方體①移走前的俯視圖正方形的個數(shù)為1,3,1;正方體①移走后的俯視圖正方形的個數(shù),1,3;發(fā)生改變.故選D.【考點】簡單組合體的三視圖.6、A【分析】根據(jù)根的判別式即可求出答案.【詳解】由題意可知:△=4﹣4×5=﹣16<1.故選:A.【點睛】本題考查了一元二次方程根的判別式,解答本題的關鍵是熟練掌握一元二次方程根的判別式.7、D【解析】試題分析:一元二次方程的一般式為:a+bx+c=0(a、b、c為常數(shù),且a≠0),根據(jù)定義可得:A選項中a有可能為0,B選項中含有分式,C選項中經(jīng)過化簡后不含二次項,D為一元二次方程.考點:一元二次方程的定義8、D【解析】∵拋物線y=-3(x+1)2-2的頂點坐標為(-1,-2),平移后拋物線y=-3x2的頂點坐標為(0,0),∴平移方法為:向右平移1個單位,再向上平移2個單位.故選D.9、D【分析】根據(jù)反比例函數(shù)圖象上的點的坐標特征,將P(﹣1,1)代入反比例函數(shù)的解析式(k≠0),然后解關于k的方程,即可求得k=-1.【詳解】解:將P(﹣1,1)代入反比例函數(shù)的解析式(k≠0),解得:k=-1.故選D.【點睛】本題考查待定系數(shù)法求反比例函數(shù)解析式,掌握求解步驟正確計算是本題的解題關鍵.10、B【分析】由平行線的性質(zhì)得出,由旋轉的性質(zhì)可知,則有,然后利用三角形內(nèi)角和定理即可求出旋轉角的度數(shù).【詳解】由旋轉的性質(zhì)可知所以旋轉角等于40°故選:B.【點睛】本題主要考查平行線的性質(zhì),等腰三角形的性質(zhì)和旋轉的性質(zhì),掌握旋轉角的概念及平行線的性質(zhì),等腰三角形的性質(zhì)和旋轉的性質(zhì)是解題的關鍵.11、B【分析】可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.12、D【解析】A、由a=1>0,可得出拋物線開口向上,A選項錯誤;B、由拋物線與y軸的交點坐標可得出c值,進而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、由拋物線開口向上,可得出y無最大值,C選項錯誤;D、由拋物線的解析式利用二次函數(shù)的性質(zhì),即可求出拋物線的對稱軸為直線x=-,D選項正確.綜上即可得出結論.【詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項錯誤;B、∵拋物線y=x1-3x+c與y軸的交點為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當y=0時,有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點為(1,0)、(1,0),B選項錯誤;C、∵拋物線開口向上,∴y無最大值,C選項錯誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項正確.故選D.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的性質(zhì)、二次函數(shù)的最值以及二次函數(shù)圖象上點的坐標特征,利用二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點的坐標特征逐一分析四個選項的正誤是解題的關鍵.二、填空題(每題4分,共24分)13、1【分析】直接根據(jù)一元二次方程根與系數(shù)的關系進行求解即可.【詳解】的兩個實數(shù)根為,,.故答案為1.【點睛】本題主要考查一元二次方程根與系數(shù)的關系,熟記根與系數(shù)的關系是解題的關鍵.14、40%【解析】設該地區(qū)居民年人均收入平均增長率為,根據(jù)到2018年人均年收入達到39200元列方程求解即可.【詳解】設該地區(qū)居民年人均收入平均增長率為,,解得,,(舍去),∴該地區(qū)居民年人均收入平均增長率為,故答案為:.【點睛】本題考查了一元二次方程的應用---增長率問題;本題的關鍵是掌握增長率問題中的一般公式為a(1+x)n

=b,其中n為共增長了幾年,a為第一年的原始數(shù)據(jù),b是增長后的數(shù)據(jù),x是增長率.15、1【分析】根據(jù)正切的定義求出CD,根據(jù)等腰直角三角形的性質(zhì)求出BD,結合圖形計算,得到答案.【詳解】解:在Rt△ACD中,tan∠CAD=,∴CD=AD?tan∠CAD=30×tan30°=10≈17,在Rt△ABD中,∠DAB=45°,∴BD=AD=30,∴h=CD+BD≈1,故答案為:1.【點睛】本題考查解直角三角形的應用,要注意利用已知線段和角通過三角關系求解.16、2.5cm.【分析】根據(jù)圓周角定理得到∠COB=2∠CDB=60°,然后根據(jù)含30度的直角三角形三邊的關系求出OE即可.【詳解】∵CD⊥AB,∴∠OEC=90°,∵∠COB=2∠CDB=2×30°=60°,∴OE=OC=×5=2.5,即圓心O到弦CD的距離為2.5cm.故答案為2.5cm.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.17、3【分析】根據(jù)一元二次方程根與系數(shù)的關系,得出和的值,然后將平方和變形為和的形式,代入便可求得k的值.【詳解】∵,設方程的兩個解為則,∵兩實根的平方和為,即=∴解得:k=3或k=-11∵當k=-11時,一元二次方程的△<0,不符,需要舍去故答案為:3【點睛】本題考查根與系數(shù)的關系,注意在最后求解出2個值后,有一個值不符需要舍去.18、4【分析】如圖,連接OC交BD于K.設DE=k.BE=4k,則DK=BK=2.5k,EK=1.5k,由AD∥CK,推出AE:EC=DE:EK,可得AE=4,由△ECK∽△EBC,推出EC2=EK?EB,求出k即可解決問題.【詳解】解:如圖,連接OC交BD于K.∵,∴OC⊥BD,∵BE=4DE,∴可以假設DE=k.BE=4k,則DK=BK=2.5k,EK=1.5k,∵AB是直徑,∴∠ADK=∠DKC=∠ACB=90°,∴AD∥CK,∴AE:EC=DE:EK,∴AE:6=k:1.5k,∴AE=4,∵△ECK∽△EBC,∴EC2=EK?EB,∴36=1.5k×4k,∵k>0,∴k=,∴BC===2,∴AB===4.故答案為:4.【點睛】本題考查相似三角形的判定和性質(zhì),垂徑定理,圓周角定理等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,屬于中考??碱}型.三、解答題(共78分)19、【分析】根據(jù)二次函數(shù)解析式的頂點式以及待定系數(shù)法,即可得到答案.【詳解】把頂點代入得:,把代入得:,∴二次函數(shù)的表達式為:.【點睛】本題主要考查二次函數(shù)的待定系數(shù)法,掌握二次函數(shù)解析式的頂點式是解題的關鍵.20、所圍矩形豬舍的長為1m、寬為8m【分析】設矩形豬舍垂直于住房墻一邊長為xm可以得出平行于墻的一邊的長為(27﹣2x+1)m.根據(jù)矩形的面積公式建立方程求出其解就可以了.【詳解】解:設矩形豬舍垂直于住房墻一邊長為xm可以得出平行于墻的一邊的長為(27﹣2x+1)m,由題意得x(27﹣2x+1)=96,解得:x1=6,x2=8,當x=6時,27﹣2x+1=16>15(舍去),當x=8時,27﹣2x+1=1.答:所圍矩形豬舍的長為1m、寬為8m.【點睛】本題考查了列一元二次方程解實際問題的運用,矩形的面積公式的運用及一元二次方程的解法的運用,解答時尋找題目的等量關系是關鍵.21、(1)證明見解析;(2)1.【解析】試題分析:(1)、連接DO,根據(jù)平行線的性質(zhì)得出∠DAO=∠COB,∠ADO=∠COD,結合OA=OD得出∠COD=∠COB,從而得出△COD和△COB全等,從而得出切線;(2)、設⊙O的半徑為R,則OD=R,OE=R+1,根據(jù)Rt△ODE的勾股定理求出R的值得出答案.試題解析:(1)證明:連結DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∵OD=OB,OC=OC,∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切線,∴∠CBO=90°,∴∠CDO=90°,又∵點D在⊙O上,∴CD是⊙O的切線;(2)設⊙O的半徑為R,則OD=R,OE=R+1,∵CD是⊙O的切線,∴∠EDO=90°,∴ED2+OD2=OE2,∴32+R2=(R+1)2,解得R=1,∴⊙O的半徑為1.22、1【分析】注意到可以利用完全平方公式進行展開,利潤平方差公式可化為,則將各項合并即可化簡,最后代入進行計算.【詳解】解:原式將代入原式【點睛】考查整式的混合運算,靈活運用兩條乘法公式:完全平方公式和平方差公式是解題的關鍵,同時,在去括號的過程中要注意括號前的符號,若為負號,去括號后,括號里面的符號要改變.23、5【解析】(1)依據(jù)勾股定理即可得到OA的長;(2)取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.【詳解】解:(1)由勾股定理,可得AO==5,故答案為5;(2)如圖,取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;如圖,取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【點睛】本題考查作圖﹣復雜作圖、角平分線的性質(zhì)等知識,解題的關鍵是熟練掌握等腰三角形的性質(zhì)的應用,角平分線的性質(zhì)的應用,勾股定理以及相似三角形的性質(zhì).24、(1)證明見解析;(2)【分析】(1)連接OD,利用等邊對等角證得∠1=∠B,利用切線的性質(zhì)證得OD∥AC,推出∠B=∠C,從而證明△ABC是等腰三角形;(2)連接AD,利用等腰三角形的性質(zhì)證得∠B=∠C=30,BD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論