版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第二一頁(yè)日…頁(yè))第二一頁(yè)日…頁(yè))華中師范大學(xué)2014-2015學(xué)年第一學(xué)期期末考試試卷(A)??號(hào)學(xué)??名姓生學(xué).?級(jí)年??業(yè)專>系1院線封密課程名稱量子力學(xué)課程編號(hào)83810113任課教師題型填空題判斷題證明題簡(jiǎn)答題計(jì)算題總分分值2010162034100得分得分評(píng)閱人一、填空題:(共10題,每題2分,共20分)1.若某種光的波長(zhǎng)為九,則其光子的能量為_hc/九_(tái),動(dòng)量大小為—h/九.戴維遜一革末實(shí)驗(yàn)主要表現(xiàn)出電子具有波動(dòng)性。.若WG,t)是歸一化的波函數(shù),則,G,t)|2dx表示t時(shí)刻x附近dx體積元內(nèi)發(fā)現(xiàn)粒子的概率。.設(shè)力學(xué)量算符F與G不對(duì)易,且其對(duì)易子為[FG卜ik,則它們的不確定性關(guān)系為kAFAG>—。25.厄米算符在自身表象是對(duì)角矩陣。6.從量子力學(xué)的觀點(diǎn)看,氫原子中核外電子的運(yùn)動(dòng)不再是圓軌道上的運(yùn)動(dòng),而是電子云的圖像,電子云是電子電荷在核外的概率分布。.設(shè)氫原子處于態(tài)W(r,6,中)=2R(r?(①明-巨R(r?(仇明,求氫原子的角動(dòng)量321103211-1z分量的平均值-5/9。.證明電子具有自旋的實(shí)驗(yàn)是鈉黃線的精細(xì)結(jié)構(gòu)/復(fù)雜塞曼效應(yīng)/斯特恩-蓋拉赫實(shí)TOC\o"1-5"\h\z.兩個(gè)角動(dòng)量,角量子數(shù)分別為j=1,j=1,它們耦合的總角動(dòng)量的角量子數(shù)J=1223/2或1/2。.周期性微擾下,當(dāng)tTB時(shí),躍遷概率為W=把IF|25(e(0)-E(0)土3)。式中nfmmnmn8函數(shù)的物理意義是躍遷過程能量守恒。得分評(píng)閱人二、判斷題:(共10題,每題1分,共10分).光電效應(yīng)證實(shí)了光的粒子性,康普頓效應(yīng)進(jìn)一步證實(shí)了光的粒子性。(J).若W州,",是體系的一系列可能的狀態(tài),則這些態(tài)的線性疊加12nV=CV+CV++CV+(其中C,C,,C,為復(fù)常數(shù))也是體系的一個(gè)可1122nn12n能狀態(tài)。(J).不同定態(tài)的線性疊加還是定態(tài)。(X).因?yàn)樽鴺?biāo)與動(dòng)量算符均是厄米算符,所以它們的乘積一定是厄米算符。(X).若兩個(gè)力學(xué)量算符不對(duì)易,則它們一般沒有共同本征態(tài)。(J).粒子在中心力場(chǎng)中運(yùn)動(dòng),若角動(dòng)量Lz是守恒量,那么Lx就不是守恒量。(X).在一維勢(shì)場(chǎng)中運(yùn)動(dòng)的粒子,勢(shì)能對(duì)原點(diǎn)對(duì)稱:U(-x)=U(x),則粒子的束縛態(tài)波函數(shù)一定具有確定的宇稱。(J).費(fèi)米子體系的哈密頓算符H必須是交換反對(duì)稱的,玻色子體系的哈密頓算符H必須是交換對(duì)稱的。(X).全同粒子體系的波函數(shù)具有一定的對(duì)稱性,是來自于全同粒子的不可區(qū)分性。(J).自由粒子所處的狀態(tài)只能是平面波。(X)
得分評(píng)閱人三、證明題:(共2題,每題8分,共16分).用狄拉克符號(hào)證明:(1)厄米算符的本征值是實(shí)數(shù);(2)厄米算符不同本征值的本征矢互相正交(非簡(jiǎn)并情形)。(8分)證明:(1)設(shè)F才=F,其本征值方程為F|f'):=f\f}①1n.n1n,用本征矢的共軛矢量;fj左乘上式,得到(f|F|f)=(f\f\f)=f(f\f戶f②nn1nnn1n1nfnxn'nn對(duì)上式取共軛,得"|F|f;*=f*③nnn封-利用厄米算符的定義(f\Ff)*=〈f\Ftf}=(f\Ff),得出②式與③式相等,即n1n,nn1nfnn1n封-f*=fnn(2)厄米算符的本征值方程記為F\i}=fji)或Fj=fj\j,用j左乘前式,用("左乘后式,得TOC\o"1-5"\h\zjF|i)=(jf.槨=fij④(ilFlj=C'lf7lj=j\j⑤④式取共軛得(ilFj=f.(ilj⑥⑤式與⑥式相減,左邊為零,得(f「fj)《\j=0而(f—f)牛0,則(ij=0,證畢。ij\'第二—頁(yè)日頁(yè))第二—頁(yè)日頁(yè))第」一頁(yè)日…頁(yè))第」一頁(yè)日…頁(yè))2.證明處于1s,最大。(提示:氫原子波函數(shù)V(r,0,6=R(2.證明處于1s,最大。(提示:氫原子波函數(shù)V(r,0,6=R(r)Y(0,⑺,nlmnlIm2.上其中R(r)=ea0,10a3/2
0R21(r)=1(2a)3/2
03/232Ia0)181<15Ia0)e3a0。(8分)2p和3d態(tài)的氫原子,分別在r=a,4a和9a的球殼內(nèi)發(fā)現(xiàn)電子的概率000證明:rr+dr證明:rwnl(r)dr=fdJd9加(r,0,4)2r2sin0drwnl=R=R(r)2r2dr
nlY(0,⑺|2sin0d0Im00=R2(r)r2drnl得1s態(tài),2p態(tài)和3d態(tài)的徑向概率密度為w(r)=R2(r)r2=10104r2e-2r/w(r)=R2(r)r2=10104r2e-2r/a0a30w(r)=R2(r)r2=2121r4e-r/a024a500w(r)=R2(r)r2=32328r6e-2r/3a812x15a700概率密度w(r)的極值由一階偏導(dǎo)數(shù)為零得出,即nlSw(r)
——10Sr4(「/2、=一2re-2r/a0+r2e-2ra0(-一)dw(r)
——21—dr24a50(1)4r3e-r/a0+r4e-r/a0(-一)=0dw(r)
——32—dr812x15a70(6r5e-2r/3a0+r6e-2r/3a0(I得r=9a。證畢。
0得分評(píng)閱人四、簡(jiǎn)答題:(共5題,每題4分,共20分).簡(jiǎn)述玻爾的量子論,并對(duì)它進(jìn)行簡(jiǎn)單的評(píng)價(jià)。答:為了解釋原子穩(wěn)定性的問題和光譜的線狀譜,玻爾的工作:(a)首先假設(shè)了不連續(xù)的定態(tài),處于定態(tài)的電子不輻射。定態(tài)由量子化條件決定。(b)還引進(jìn)了量子躍遷的概念。這一模型解決了上述兩個(gè)困難,其定態(tài)的概念依然保留在近代量子論中,為人們認(rèn)識(shí)微觀世界和建立量子理論打下了基礎(chǔ)。其缺點(diǎn)是,量子化條件是輸入,而不是輸出;保留了經(jīng)典的概念,如軌道,沒有成為一個(gè)完整的量子理論體系。.處于定態(tài)的體系具有哪些性質(zhì)。答:(a)定態(tài)是能量有確定值的狀態(tài);(b)處于定態(tài)的系統(tǒng),幾率分布與時(shí)間無關(guān),幾率流密度與時(shí)間無關(guān);(c)任何力學(xué)量(不顯含時(shí)間)的平均值不隨時(shí)間變化??傊☉B(tài)是一種力學(xué)性質(zhì)穩(wěn)定的狀態(tài)。.隧道效應(yīng)。答:微觀粒子能穿越比它的能量高的勢(shì)壘的現(xiàn)象,稱為隧道效應(yīng)。它是微觀粒子波動(dòng)性的體現(xiàn)。封-封-4.躍遷的選擇定則及其理論依據(jù)。答:光照射原子時(shí),即使入射光中與玻爾頻率對(duì)應(yīng)的能量密度不為零,躍遷也不一定發(fā)生。還要求兩能級(jí)的量子數(shù)滿足Al=l—l=±1,Am=m-m=0,±1,這稱為選擇定則。其理論依據(jù)是,在電偶極近似下躍遷概率Wnfm論依據(jù)是,在電偶極近似下躍遷概率Wnfmocrmnmn3mn)中0時(shí),若rmn『=0,導(dǎo)致躍遷概率為零,躍遷是禁戒的。允許的躍遷要滿足|r,2w0,就得到選擇mnrmn定則。.分波法的基本思想。答:對(duì)于中心力場(chǎng),角動(dòng)量是守恒量。應(yīng)用角動(dòng)量守恒,把受勢(shì)場(chǎng)作用前后的定態(tài)按分波展開,各分波在散射過程中可以分開來一個(gè)一個(gè)處理,勢(shì)場(chǎng)對(duì)各分波的效應(yīng)在于改變分波的相位。
得分評(píng)閱人五、計(jì)算題:(共3題,共34分)1.質(zhì)量為目的一維諧振子的基態(tài)波函數(shù)為V0(x)=(奈e-32x2,其中a={吧,求粒子出現(xiàn)在經(jīng)典禁區(qū)的概率。(10分)(積分公式:fe-x2dx=---,1e-x2dx=0.75)2001解:諧振子的能量表達(dá)式E=T+-^W2x2,因經(jīng)典粒子的動(dòng)能必小于等于總能量,其轉(zhuǎn)折點(diǎn)(動(dòng)能2E為零的點(diǎn))滿足E=0+29A2,得2E為零的點(diǎn))滿足E=0+29A2,得x=±.。對(duì)于基態(tài),E=13,轉(zhuǎn)折點(diǎn)x=±旦3,(經(jīng)典禁區(qū)為-8,-
I日3」一)明癡,+]。量子諧振子出現(xiàn)在經(jīng)典禁區(qū)的概率為|2dx+=21+\.|2dx+=21+\.2dx=2平aJ-^=e-a2x2dx—,?兀+)總e-&2d工-1=0.154+1在經(jīng)典禁區(qū),粒子出現(xiàn)的概率不為零,對(duì)于基態(tài),在經(jīng)典禁區(qū)出現(xiàn)的概率為15.4%。
2.已知在L和L的共同表象中,算符L和L的矩陣表示分別為z0、z0、10J和L對(duì)角化,y寫出使矩陣對(duì)角化的么正變換矩陣U。和L對(duì)角化,y寫出使矩陣對(duì)角化的么正變換矩陣U。(12分)解:Lx的本征值方程為-2a1a2a3a1a2a3久期方程的解為X=,0,-分別帶入本征值方程,得歸一化本征矢1&2同理,L的本征值方程為y同理,L的本征值方程為yb2
b1b3Jb2b1b3,久期方程的解為入=,0,-,歸一化-1-1IJ(1、L-/-1lJ為了將矩陣Lx和Ly對(duì)角化,需要做表象變換,為了將矩陣Lx和Ly對(duì)角化,需要做表象變換,變到它們自身的表象,就對(duì)角化了。表象變換的矩陣分別為u:21-22<210-、2i22-1L(L(Lx)=U十L(Lz)U=L(Ly)=UtL(Lz)U第^頁(yè)日頁(yè))第^頁(yè)日頁(yè))第^頁(yè)日頁(yè))第^頁(yè)日頁(yè))3.已知某表象中哈密頓算符的矩陣形式3.已知某表象中哈密頓算符的矩陣形式H=1c0c3000c—2(1)設(shè)c1,應(yīng)用微擾論求哈密頓算符的本征值到二級(jí)近似;(2)求精確解,并與上面的微擾論結(jié)果比較。(12分)(1解:當(dāng)c1,可把哈密頓分解為H=H+H'=0H是對(duì)角矩陣,是H是對(duì)角矩陣,是H在自身表象的形式。所以,零級(jí)近似的能量和態(tài)矢為E(0)=1,E(0)=3,E(0)=一2;甲=由無簡(jiǎn)并微擾公式,E(1)=H',E(2)nnE(1)=H'=0,由無簡(jiǎn)并微擾公式,E(1)=H',E(2)nnE(1)=H'=0,E(1)=H'=0,11H'nlE(0)—E(0)l豐nnl二c,得能量的一級(jí)修正為J1lE(0)—E(0)=12E(0)—E(0)+13:E(0)—E(0)lW11l1213VIH'|2|H'|2|H'|2/JO7.-1-2^^21E(0)—E(0)E(0)—E(0)123E(0)—E(0)l豐22l2123V|H'|2|H'|2|H'|2:乙3■=31-+3222IH'|2IH'|2E⑵233能量的二級(jí)修正為牛1=—C22E(0)—E(0)lw33l3132E(0)—E(0)E(0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年蘇人新版選修6歷史上冊(cè)月考試卷含答案
- 2025年浙教新版九年級(jí)語文下冊(cè)月考試卷
- 2025年新世紀(jì)版七年級(jí)生物上冊(cè)階段測(cè)試試卷含答案
- 2025年湘師大新版九年級(jí)英語下冊(cè)階段測(cè)試試卷含答案
- 2025年粵教滬科版八年級(jí)歷史上冊(cè)月考試卷含答案
- 2025年北師大新版高二化學(xué)上冊(cè)階段測(cè)試試卷
- 2025年滬教新版九年級(jí)歷史上冊(cè)階段測(cè)試試卷
- 二零二五年度土地承包經(jīng)營(yíng)權(quán)流轉(zhuǎn)服務(wù)合同3篇
- 2025年度生物制藥企業(yè)原材料采購(gòu)合同3篇
- 2025年牧民草場(chǎng)承包經(jīng)營(yíng)權(quán)轉(zhuǎn)讓合同范本4篇
- 《健康體檢知識(shí)》課件
- 2023年護(hù)理人員分層培訓(xùn)、考核計(jì)劃表
- 生產(chǎn)計(jì)劃主管述職報(bào)告
- JTG-T-F20-2015公路路面基層施工技術(shù)細(xì)則
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)附答案
- 中西方校服文化差異研究
- 《子宮肉瘤》課件
- 《準(zhǔn)媽媽衣食住行》課件
- 給男友的道歉信10000字(十二篇)
- 客人在酒店受傷免責(zé)承諾書范本
- 練字本方格模板
評(píng)論
0/150
提交評(píng)論