版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)曲線在點處的切線方程為,則()A.1 B.2 C.3 D.42.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.3.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.4.函數(shù)的部分圖像如圖所示,若,點的坐標(biāo)為,若將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,則的最小值為()A. B. C. D.5.若將函數(shù)的圖象上各點橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點對稱 D.函數(shù)在上最大值是16.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.7.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度8.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點為,則()A. B. C. D.9.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.10.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件11.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.612.已知復(fù)數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實數(shù)a=()A.-1 B.1 C.0 D.2二、填空題:本題共4小題,每小題5分,共20分。13.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是__________元.14.公比為正數(shù)的等比數(shù)列的前項和為,若,,則的值為__________.15.已知正項等比數(shù)列中,,則__________.16.某次足球比賽中,,,,四支球隊進(jìn)入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進(jìn)入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)數(shù)列滿足,,其前n項和為,數(shù)列的前n項積為.(1)求和數(shù)列的通項公式;(2)設(shè),求的前n項和,并證明:對任意的正整數(shù)m、k,均有.18.(12分)已知函數(shù)的定義域為,且滿足,當(dāng)時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數(shù)的取值范圍.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若對任意恒成立,求的取值范圍.20.(12分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.21.(12分)在平面直角坐標(biāo)系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線、的極坐標(biāo)方程;(2)在極坐標(biāo)系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積22.(10分)已知中,內(nèi)角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查運算求解能力,是基礎(chǔ)題2.D【解析】
根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因為復(fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復(fù)數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎(chǔ)題.3.B【解析】
根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.4.B【解析】
根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關(guān)于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關(guān)鍵,要求熟練掌握函數(shù)圖象之間的變換關(guān)系,屬于簡單題目.5.A【解析】
根據(jù)三角函數(shù)伸縮變換特點可得到解析式;利用整體對應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點對稱,錯誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標(biāo)縮短到原來的得:當(dāng)時,在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯誤;當(dāng)時,,關(guān)于點對稱,錯誤;當(dāng)時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).6.D【解析】
根據(jù)面面垂直的判定定理,對選項中的命題進(jìn)行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當(dāng),,時,則,故不能作為的充分條件,故B錯誤;對于C,當(dāng),,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.7.D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點睛】本題主要考查三角函數(shù)的平移變換,難度不大.8.B【解析】
設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.9.B【解析】
由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運算的能力,屬于中檔題.10.A【解析】
向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標(biāo)表示,屬于基礎(chǔ)題.11.A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.12.B【解析】
化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.【點睛】本題考查了根據(jù)復(fù)數(shù)類型求參數(shù),意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤為元
則根據(jù)題意可得目標(biāo)函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,
由圖象知當(dāng)直線經(jīng)過時,目標(biāo)函數(shù)的截距最大,此時最大,
由可得,即此時最大,
即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤,最大利潤為1.【點睛】本題考查用線性規(guī)劃知識求利潤的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線性規(guī)劃的知識進(jìn)行求解是解決本題的關(guān)鍵.14.56【解析】
根據(jù)已知條件求等比數(shù)列的首項和公比,再代入等比數(shù)列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式和前項和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.15.【解析】
利用等比數(shù)列的通項公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點睛】本題考查了等比數(shù)列的通項公式以及等比中項,需熟記公式,屬于基礎(chǔ)題.16.0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2),證明見解析【解析】
(1)利用已知條件建立等量關(guān)系求出數(shù)列的通項公式.(2)利用裂項相消法求出數(shù)列的和,進(jìn)一步利用放縮法求出結(jié)論.【詳解】(1),,得是公比為的等比數(shù)列,,,當(dāng)時,數(shù)列的前項積為,則,兩式相除得,得,又得,;(2),故.【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,數(shù)列的前項和的應(yīng)用,裂項相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于中檔題.18.(1);(2).【解析】
(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實數(shù)的取值范圍.【詳解】(1)設(shè),,所以函數(shù)在上單調(diào)遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設(shè),則,令,則,所以在區(qū)間上單調(diào)遞增,所以,根據(jù)條件,只要,所以.【點睛】本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.19.(1);(2).【解析】
(1)通過討論的范圍,分為,,三種情形,分別求出不等式的解集即可;(2)通過分離參數(shù)思想問題轉(zhuǎn)化為,根據(jù)絕對值不等式的性質(zhì)求出最值即可得到的范圍.【詳解】(1)當(dāng)時,原不等式等價于,解得,所以,當(dāng)時,原不等式等價于,解得,所以此時不等式無解,當(dāng)時,原不等式等價于,解得,所以綜上所述,不等式解集為.(2)由,得,當(dāng)時,恒成立,所以;當(dāng)時,.因為當(dāng)且僅當(dāng)即或時,等號成立,所以;綜上的取值范圍是.【點睛】本題考查了解絕對值不等式問題,考查絕對值不等式的性質(zhì)以及分類討論思想,轉(zhuǎn)化思想,屬于中檔題.20.(1)證明見解析(2)【解析】
(1)先證明EF平面,即可求證;(2)根據(jù)二面角的余弦值,可得平面,以為坐標(biāo)原點,建立空間直角坐標(biāo)系,利用向量計算線面角即可.【詳解】(1)連接,交于點,連結(jié).則,故面.又面,因此.(2)由(1)知即為二面角的平面角,且.在中應(yīng)用余弦定理,得,于是有,即,從而有平面.以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,于是,,設(shè)平面的法向量為,則,即,解得于是平面的一個法向量為.設(shè)直線與平面所成角為,因此.【點睛】本題主要考查了線面垂直,線線垂直的證明,二面角,線面角的向量求法,屬于中檔題.21.(1),;(2).【解析】
(1)先把參數(shù)方程化成普通方程,再利用極坐標(biāo)的公式把普通方程化成極坐標(biāo)方程;(2)先利用極坐標(biāo)求出弦長,再求高,最后求的面積.【詳解】(1)曲線的極坐標(biāo)方程為:,因為曲線的普通方程為:,曲線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球聚異戊二烯醫(yī)用外科手套行業(yè)調(diào)研及趨勢分析報告
- 二零二五年度農(nóng)業(yè)機(jī)械抵押貸款服務(wù)協(xié)議3篇
- 個性化2024版監(jiān)護(hù)人指定及職責(zé)合同書版
- 專業(yè)壁畫制作及施工協(xié)議2024參考資料版
- 潔凈手術(shù)室施工方案
- 二零二五年度旅游景區(qū)場地租賃及維護(hù)服務(wù)協(xié)議2篇
- 二零二五年教室場地租賃及教學(xué)資源共享協(xié)議2篇
- 二零二五版辦公大樓能源消耗監(jiān)測與優(yōu)化合同2篇
- 2025年度校企合作企業(yè)人才定向培養(yǎng)協(xié)議書3篇
- 臨時路口施工方案
- 【大學(xué)課件】微型計算機(jī)系統(tǒng)
- (主城一診)重慶市2025年高2025屆高三學(xué)業(yè)質(zhì)量調(diào)研抽測 (第一次)英語試卷(含答案)
- 2025關(guān)于標(biāo)準(zhǔn)房屋裝修合同的范本
- 中國建材集團(tuán)有限公司招聘筆試沖刺題2025
- 2024年馬克思主義基本原理知識競賽試題70題(附答案)
- 2024年湖北省中考物理真題含解析
- 荔枝病蟲害防治技術(shù)規(guī)程
- 資金借貸還款協(xié)議
- 《實驗性研究》課件
- 中國革命戰(zhàn)爭的戰(zhàn)略問題(全文)
- 2024-2025學(xué)年高考英語語法第一輪復(fù)習(xí):定語從句(講義)(原卷版+解析)
評論
0/150
提交評論