遼寧省朝陽市凌源市凌源三中2021-2022學年高三壓軸卷數(shù)學試卷含解析_第1頁
遼寧省朝陽市凌源市凌源三中2021-2022學年高三壓軸卷數(shù)學試卷含解析_第2頁
遼寧省朝陽市凌源市凌源三中2021-2022學年高三壓軸卷數(shù)學試卷含解析_第3頁
遼寧省朝陽市凌源市凌源三中2021-2022學年高三壓軸卷數(shù)學試卷含解析_第4頁
遼寧省朝陽市凌源市凌源三中2021-2022學年高三壓軸卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為,則經(jīng)過點與點且與拋物線的準線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個2.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.3.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件4.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.5.已知復(fù)數(shù),為的共軛復(fù)數(shù),則()A. B. C. D.6.在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.7.若復(fù)數(shù)是純虛數(shù),則實數(shù)的值為()A.或 B. C. D.或8.設(shè)函數(shù)若關(guān)于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.9.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個10.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關(guān)于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.11.設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當時,.若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為()A. B. C. D.12.在展開式中的常數(shù)項為A.1 B.2 C.3 D.7二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.14.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.15.已知,則_____。16.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(I)若討論的單調(diào)性;(Ⅱ)若,且對于函數(shù)的圖象上兩點,存在,使得函數(shù)的圖象在處的切線.求證:.18.(12分)選修4-4:坐標系與參數(shù)方程在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.19.(12分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.20.(12分)某單位準備購買三臺設(shè)備,型號分別為已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設(shè)備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設(shè)備時應(yīng)購買的易耗品的件數(shù).該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)査每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.每臺設(shè)備一個月中使用的易耗品的件數(shù)678型號A30300頻數(shù)型號B203010型號C04515將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設(shè)備使用的易耗品總數(shù)超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?21.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對應(yīng)的變換作用下得到另一曲線,求曲線的方程.22.(10分)的內(nèi)角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

圓心在的中垂線上,經(jīng)過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數(shù)是2種.故選:.【點睛】本題主要考查拋物線的簡單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.2.A【解析】

對復(fù)數(shù)進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復(fù)數(shù)的四則運算及虛部的概念,計算過程要注意.3.A【解析】

利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.4.C【解析】

根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點睛】本題主要考查了橢圓的定義運用以及構(gòu)造齊次式求橢圓的離心率的問題,屬于中檔題.5.C【解析】

求出,直接由復(fù)數(shù)的代數(shù)形式的乘除運算化簡復(fù)數(shù).【詳解】.故選:C【點睛】本題考查復(fù)數(shù)的代數(shù)形式的四則運算,共軛復(fù)數(shù),屬于基礎(chǔ)題.6.B【解析】

計算出的值,推導出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.7.C【解析】試題分析:因為復(fù)數(shù)是純虛數(shù),所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數(shù)8.B【解析】

畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點睛】本題考查了函數(shù)零點問題,意在考查學生的計算能力和應(yīng)用能力,畫出圖像是解題的關(guān)鍵.9.C【解析】

計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構(gòu)成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.10.D【解析】

先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進行圖象的平移時,注意自變量的系數(shù),屬于中檔題.11.D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導,判斷其單調(diào)性,進而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因為,所以,所以為奇函數(shù),當時,,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當時,,所以函數(shù)在時單調(diào)遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.12.D【解析】

求出展開項中的常數(shù)項及含的項,問題得解。【詳解】展開項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉(zhuǎn)化思想,考查計算能力,屬于基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關(guān)鍵是由三視圖還原原幾何體,是中檔題.14.【解析】

真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點睛】本題考查對數(shù)型復(fù)合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.15.【解析】

由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數(shù)基本關(guān)系式與和角的正切公式。16.【解析】

甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)見證明【解析】

(1)對函數(shù)求導,分別討論,以及,即可得出結(jié)果;(2)根據(jù)題意,由導數(shù)幾何意義得到,將證明轉(zhuǎn)化為證明即可,再令,設(shè),用導數(shù)方法判斷出的單調(diào)性,進而可得出結(jié)論成立.【詳解】(1)解:易得,函數(shù)的定義域為,,令,得或.①當時,時,,函數(shù)單調(diào)遞減;時,,函數(shù)單調(diào)遞增.此時,的減區(qū)間為,增區(qū)間為.②當時,時,,函數(shù)單調(diào)遞減;或時,,函數(shù)單調(diào)遞增.此時,的減區(qū)間為,增區(qū)間為,.③當時,時,,函數(shù)單調(diào)遞增;此時,的減區(qū)間為.綜上,當時,的減區(qū)間為,增區(qū)間為:當時,的減區(qū)間為,增區(qū)間為.;當時,增區(qū)間為.(2)證明:由題意及導數(shù)的幾何意義,得由(1)中得.易知,導函數(shù)在上為增函數(shù),所以,要證,只要證,即,即證.因為,不妨令,則.所以,所以在上為增函數(shù),所以,即,所以,即,即.故有(得證).【點睛】本題主要考查導數(shù)的應(yīng)用,通常需要對函數(shù)求導,利用導數(shù)的方法研究函數(shù)的單調(diào)性以及函數(shù)極值等即可,屬于??碱}型.18.(1),(2)【解析】

試題分析:利用將極坐標方程化為直角坐標方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點到直線距離公式得:設(shè)點P的坐標為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標方程為x+y=1.設(shè)點P的坐標為(2cosα,sinα),得P到直線l的距離,dmax=.考點:極坐標方程化為直角坐標方程,點到直線距離公式19.(1)見解析(2)最小值為1.【解析】

(1)根據(jù)拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設(shè)出兩點的坐標,利用導數(shù)求得切線的方程,由此求得點的坐標.寫出直線的方程,聯(lián)立直線的方程和曲線的方程,根據(jù)韋達定理求得點的坐標,并由此判斷出始終在直線上,且.(2)設(shè)直線的傾斜角為,求得的表達式,求得的表達式,由此求得四邊形的面積的表達式進而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點,且與直線相切,∴動圓圓心到定點和定直線的距離相等,∴動圓圓心的軌跡是以為焦點的拋物線,∴軌跡的方程為:,設(shè),∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯(lián)立可得:,,∴點始終在直線上且;(2)設(shè)直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當且僅當或,即時取等號,∴四邊形的面積的最小值為1.【點睛】本小題主要考查動點軌跡方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中四邊形面積的最值的計算,考查運算求解能力,屬于中檔題.20.(1)(2)應(yīng)該購買21件易耗品【解析】

(1)由統(tǒng)計表中數(shù)據(jù)可得型號分別為在一個月使用易耗品的件數(shù)為6,7,8時的概率,設(shè)該單位三臺設(shè)備一個月中使用易耗品的件數(shù)總數(shù)為X,則,利用獨立事件概率公式進而求解即可;(2)由題可得X所有可能的取值為,即可求得對應(yīng)的概率,再分別討論該單位在購買設(shè)備時應(yīng)同時購買20件易耗品和21件易耗品時總費用的可能取值及期望,即可分析求解.【詳解】(1)由題中的表格可知A型號的設(shè)備一個月使用易耗品的件數(shù)為6和7的頻率均為;B型號的設(shè)備一個月使用易耗品的件數(shù)為6,7,8的頻率分別為;C型號的設(shè)備一個月使用易耗品的件數(shù)為7和8的頻率分別為;設(shè)該單位一個月中三臺設(shè)備使用易耗品的件數(shù)分別為,則,,,設(shè)該單位三臺設(shè)備一個月中使用易耗品的件數(shù)總數(shù)為X,則而,,故,即該單位一個月中三臺設(shè)備使用的易耗品總數(shù)超過21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論