版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Chapter3InventoryModels★deterministicmodel★stochasticmodelInventoryModelsThestudyofinventorymodelsisconcernedwithtwobasicquestions:HowmuchshouldbeorderedeachtimeWhenshouldthereorderingoccurTheobjectiveistominimizetotalvariablecostoveraspecifiedtimeperiod(assumedtobeannualinthefollowingreview).InventoryCostsOrderingcost--salariesandexpensesofprocessinganorder,regardlessoftheorderquantityHoldingcost--usuallyapercentageofthevalueoftheitemassessedforkeepinganitemininventory(includingfinancecosts,insurance,securitycosts,taxes,warehouseoverhead,andotherrelatedvariableexpenses)Backordercost--costsassociatedwithbeingoutofstockwhenanitemisdemanded(includinglostgoodwill)Purchasecost--theactualpriceofthe
itemsOthercostsDeterministicModelsThesimplestinventorymodelsassumedemandandtheotherparametersoftheproblemtobedeterministicandconstant.Thedeterministicmodelscoveredinthischapterare:Economicorderquantity(EOQ)EconomicproductionlotsizeEOQwithplannedshortagesEOQwithquantitydiscountsEconomicOrderQuantity(EOQ)Themostbasicofthedeterministicinventorymodelsistheeconomicorderquantity(EOQ).Thevariablecostsinthismodelareannualholdingcostandannualorderingcost.FortheEOQ,annualholdingandorderingcostsareequal.DeterministicModel★EconomicOrderQuantity,(EOQ)
Asimplemodelrepresentingthemostcommoninventorysituationfacedbymanufacturers,retailers,andwholesalersistheEOQ(EconomicOrderQuantity)model.(Itsometimesisalsoreferredtoastheeconomiclot-sizemodel.)EconomicOrderQuantityAssumptionsA:Annualnumberofitemsdemanded,c:Unitcostofprocuringanitem,T:Timebetweenorders,h:Annualcostperdollarvalueofholdingitemsininventory.K:fixedcostperorderTheorderquantity(Q)toreplenishinventoryarrivesallatoncejustwhendesired,namely,whentheinventoryleveldropsto0.PlannedshortagesarenotallowedTheobjectiveistodeterminewhenandhowmuchtoreplenishinventorysoastominimizethetotalcost.EconomicOrderQuantityTheMathematicalModelT=Q/AOrderpointsQTime(years)InventoryLevelSlope=-A
Figure3-1InventorysystemforthesimpleeconomicorderquantitymodelDeterministicModel
OrderquantityisQ.Numberofannualorderisn,whichequalsA/Q。Costperorderisk,sothatcostofannualOrder.WhenUnitcostofprocuringanitemisc,theannualprocurementcostisACAverageinventorylevelholdingcost
AverageholdingcostAsummption:DeterministicModel
TotalAnnualCost:transformed:DeterministicModelHoldingcostcurve:Orderingcostcurve:Totalcostcurve:DeterministicModelQ0AnnualCostTotalcost:TCOrderingcost:k(A/Q)QOrderingcost:hc(Q/2)DeterministicModelOptimalquantity:Optimalcycletime
:Optimalnumberoforder:ThevalueofQ,sayQ0,thatminimizesTC,isfoundbysettingthefirstderivativetozeroWhentheunitholdingcostincreases,bothQ0andt0decrease(smallerinventorylevels).Asthedemandrateincreases,Q0increases(largerbatches)butt0decreases(morefrequentsetups).Example:Bart’sBarometerBusinessEconomicOrderQuantityModel
Bart'sBarometerBusinessisaretailoutletthatdealsexclusivelywithweatherequipment.Bartistryingtodecideonaninventoryandreorderpolicyforhomebarometers. BarometerscostBart$50eachanddemandisabout5000peryeardistributedfairlyevenlythroughouttheyear.Reorderingcostsare$80perorderandholdingcostsarefiguredat20%ofthecostoftheitem.DeterministicModel
SupposethataMallsells12,000pairofskiseachyear.Forsimplicity,wewillassumethattheskiissoldataconstantratethroughouttheyear.ThenetcostofeachpairtotheMallis$30.Thewholesalesuppliercharges$10foreachdelivery,regardlessofhowmanypairshavebeenordered,anddeliveryalwaysoccursthedayaftertheorderisplaced.Theowner’sonlyworkingcapitalistiedupininventory,andthesefundshavebeenborrowedfromthelocalbankatasimpleannualinterestrateof10%.Inaddition,theownermustpayastatefranchisetaxof5%oftheannualinventoryvalue,andanother5%fortheftinsurance.Allotheroperatingcostsareeitherfixedinnatureordonotdependontheamountofskisordered.Theownerwantstoevaluatethepresentprocedureofordering1,000pairseachmonthandtoestablishabetterinventorypolicythatwillminimizetheannualcostsofdoingbusinessinskis.Atelevisionmanufacturingcompanyproducesitsownspeakers,whichareusedintheproductionofitstelevisionsets.Thetelevisionsetsareassembledonacontinuousproductionlineatarateof8,000permonth,withonespeakerneededperset.Eachtimeabatchisproduced,asetupcostof$12,000isincurred.Theunitproductioncostofasinglespeakeris$10.Theestimatedholdingcostofkeepingaspeakerinstockis$0.30permonth.Theproductquantitytoreplenishinventoryarrivesallatoncejustwhendesired.Theappropriateparametervaluesfromgivendatasarek=12,000,hc=0.30,A=8,000=25,928DeterministicModel
Costofproductsis$5.Reorderingcostsare$10perorderandholdingcostisfiguredat0.1%ofthecostoftheitem.demandisabout100perdayandbackorderingofitemsisnotallowed。theneededmaterialsarrivejust-in-timewhentheinventoryleveldropsto0.DeterministicModel(1)Plannedshortagesnowareallowed.(2)Whenashortageoccurs,theaffectedcustomerswillwaitfortheproducttobecomeavailableagain.(3)Theirbackordersarefilledimmediatelywhentheorderquantityarrivestoreplenishinventory.Model2:TheEOQModelwithPlannedShortagesDeterministicModelS:actualorderquantityQ:fictitiousorderquantityororderquantitythatshortageisprohibitedp:shortagecostperunitshortperunitoftimeshortQ-S:shortageininventoryjustbeforeabatchofQunitsisadded.Model2:TheEOQModelwithPlannedShortagesLet:DeterministicModelSQ-SADeterministicModelaverageinventorylevel
=Totalinventorylevel
/T=(Totalinventorylevelthatshortagedonotoccur+Totalinventorylevelthatshortageisprohibit
)/TDeterministicModel
timeshortagesdonotoccur
:
Tisasfollowedas:DeterministicModelaverageinventorylevel:DeterministicModelaverageshortagelevel
:
Shortagetime:DeterministicModelaverageshortagelevel
:Totalannualcost:DeterministicModelTherearetwodecisionvariables(SandQ)inthismodel,sotheoptimalvalues(S0andQ0)arefoundbysetting==0Therefore,
Atelevisionmanufacturingcompanyproducesitsownspeakers,whichareusedintheproductionofitstelevisionsets.Thetelevisionsetsareassembledonacontinuousproductionlineatarateof8,000permonth,withonespeakerneededperset.Eachtimeabatchisproduced,asetupcostof$12,000isincurred.Theunitproductioncostofasinglespeakeris$10.Theestimatedholdingcostofkeepingaspeakerinstockis$0.30permonth.Shortagecostofeachspeakeris$1.10permonth.Ifshortagesarepermitted.Howmanyspeakertoproduceineachbatch.EconomicProductionLotSizeModel
Model3:
EconomicProductionLotSizeModelT:timebetweentimesA:demandrateQ:orderquantityhc:holdingcostK:orderingcostB:productionrateEconomicProductionLotSizeModelfeatures:BackordersarenotallowedB:annualproductionratet1timeInventorylevelmaximuminventorylevelaverageinventorylevelOneyeart2Demand-onlyphaseTQSBB-A-AProductionphaseEconomicProductionLotSizeModel
tt1t2S=(B-A)t1Q-SQ=Bttime圖3-1Ot3features:BackordersareallowedB:annualproductionrateP:shortagecostMaximuminventoryMaximumshortageEOQwithquantitydiscountsExample:WeightyTrashBagCompany’spricingscheduleforitslargetrashcanliners:?Forordersoflessthan500bags,charges30centsperbag;?forordersof500ormorebutfewerthan1,000bags,charges29centsperbag;?andforordersof1,000ormore,charges28centsperbag.EOQwithquantitydiscounts
Thebreakpointsare500and1,000.TheordercostfunctionC(Q)isdefinedasEOQwithquantitydiscounts
IfWeightyusestrashbagsatafairlyconstantrateof600peryr,howtoplaceorder?Supposethatfixedcostofplacinganorderis$8,andholdingcostsarebasedon20%annualinterestrate.FirstcomputeEOQvaluescorrespondingtoeachoftheunitcost.EOQwithquantitydiscountsEachcurveisvalidonlyforcertainvaluesofQ,thustheaverageannualcostfunctionisgivenbydiscontinuouscurves.AnEOQvalueisrealizable,ifitfallswithintheintervalofEOQthatcorrespondstotheunitcostthathasbeenusedtocomputeit.(Q0fortheexample);EOQwithquantitydiscountsConclusion:theoptimalsolutionistoplaceastandingorderfor500unitswithWeightyatanannualcostof$198.10.EOQwithquantitydiscountsEOQwithquantitydiscounts-IncrementalQuantityDiscountsTheaverageannualcostfunctionfollowsTC(Q)hasbeendividedintothreesegmentsTC1(Q),TC2(Q),andTC3(Q),eachofwhichisobtainedbyusingoneofthethreesegmentsofC(Q).EOQwithquantitydiscounts-IncrementalQuantityDiscountsEOQwithquantitydiscounts-IncrementalQuantityDiscountsEOQwithquantitydiscounts-IncrementalQuantityDiscounts?Theoptimalsolutionoccursattheminimumofoneofthethreeaverageannualcostcurves.?Procedures:(1)DetermineanalgebraicexpressionforC(Q)correspondingtoeachpriceinterval.UsethattodetermineanalgebraicexpressionforC(Q)/Q;(2)SubstitutetheexpressionsderivedforC(Q)/QintodefiningequationforTC(Q).ComputetheminimumvalueofQcorrespondingtoeachpriceintervalseparately.(3)Determinewhichminimacomputedin(2)arerealizable(thatisfallintothecorrectinterval).ComparethevaluesoftheaverageannualcostsattherealizableEOQvaluesandpickthelowest.EOQwithquantitydiscountsThestoreplanstopurchaseaproductfromthefactory,annualdemandis500items,orderingcostis$50,unitpurchasecostcis:holdingcostsis$20.Q:what’stheoptimalpurchasequantityQ。ModelsforUncertainDemandAimsofthesectionIntroduceuncertaintyanddevelopsomemodelswherearenotknownexactlybutfollowknownprobabilitydistributions.Inparticular,wefocusonvariabledemand.Wecanclassifyproblemsaccordingtovariablesthatare:known(andeitherconstantorvariable)-inwhichcaseweknowthevaluestakenbyparametersandcanusedeterministicmodels;uncertain-inwhichcasewehaveprobabilitydistributionsforthevariablesandcanuseprobabilisticorstochastic(隨機(jī)的)models.Newsboyproblem
Thenewsboyhastodecidehowmanypaperstobuyfromhissupplierwhencustomerdemandisuncertain.Ifhebuystoomanypapers,heisleftwithunsoldstockwhichhasnovalueattheendoftheday:ifhebuystoofewpapershehasunsatisfieddemandwhichcouldhavegivenahigherprofit.Newsboyproblem
Becauseofthisillustration,singleperiodproblemsareoftencallednewsboyproblems.Although,itisawidelyoccurringproblem,wewillsticktotheoriginaldescriptionofanewsboysellingpapers.Newsboyproblem:letprepresentsthelostsalespenalty.Thedemand,beinguncertain,willbedescribedbyarandomvariableDwhoseprobabilitydistributionisspecifiedbyPD(x).WemaythinkofPD(x)astheprobabilitythattotaldemandwillequalx.Anewsboypayscdollarsforeachpaperandsellsforsdollarseach.Attheendofday,theunsoldnewspapers
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨沂科技職業(yè)學(xué)院《精細(xì)化學(xué)工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 遼河石油職業(yè)技術(shù)學(xué)院《糧油食品加工工藝學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西信息應(yīng)用職業(yè)技術(shù)學(xué)院《食品質(zhì)量與安全控制》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇工程職業(yè)技術(shù)學(xué)院《女性文學(xué)鑒賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 華東政法大學(xué)《健康教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北黃岡應(yīng)急管理職業(yè)技術(shù)學(xué)院《外國文學(xué)專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 遵義醫(yī)藥高等專科學(xué)?!恫牧虾附有浴?023-2024學(xué)年第一學(xué)期期末試卷
- 珠海格力職業(yè)學(xué)院《外科學(xué)Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶青年職業(yè)技術(shù)學(xué)院《高等天然藥物化學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中華女子學(xué)院《運(yùn)動控制系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 第二章 運(yùn)營管理戰(zhàn)略
- 《三本白皮書》全文內(nèi)容及應(yīng)知應(yīng)會知識點
- 專題14 思想方法專題:線段與角計算中的思想方法壓軸題四種模型全攻略(解析版)
- 醫(yī)院外來器械及植入物管理制度(4篇)
- 港口與港口工程概論
- 《念珠菌感染的治療》課件
- 門店裝修設(shè)計手冊
- 考研計算機(jī)學(xué)科專業(yè)基礎(chǔ)(408)研究生考試試卷與參考答案(2025年)
- 2024護(hù)理個人年終總結(jié)
- 海南省申論真題2020年(縣級及以上)
- 蛇年金蛇賀歲
評論
0/150
提交評論