2022-2023學(xué)年四川省樂山市高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第1頁(yè)
2022-2023學(xué)年四川省樂山市高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第2頁(yè)
2022-2023學(xué)年四川省樂山市高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第3頁(yè)
2022-2023學(xué)年四川省樂山市高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第4頁(yè)
2022-2023學(xué)年四川省樂山市高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了加強(qiáng)“精準(zhǔn)扶貧”,實(shí)現(xiàn)偉大復(fù)興的“中國(guó)夢(mèng)”,某大學(xué)派遣甲、乙、丙、丁、戊五位同學(xué)參加三個(gè)貧困縣的調(diào)研工作,每個(gè)縣至少去1人,且甲、乙兩人約定去同一個(gè)貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.642.的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中常數(shù)項(xiàng)為A.-40 B.-20 C.20 D.403.已知,則不等式的解集是()A. B. C. D.4.二項(xiàng)式的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.3605.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動(dòng),記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.6.已知復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知冪函數(shù)的圖象過點(diǎn),且,,,則,,的大小關(guān)系為()A. B. C. D.8.已知函數(shù),關(guān)于x的方程f(x)=a存在四個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)9.正三棱錐底面邊長(zhǎng)為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.10.若,,則的值為()A. B. C. D.11.在三棱錐中,,,,,點(diǎn)到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.12.已知數(shù)列中,,(),則等于()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知a,b均為正數(shù),且,的最小值為________.14.設(shè)為偶函數(shù),且當(dāng)時(shí),;當(dāng)時(shí),.關(guān)于函數(shù)的零點(diǎn),有下列三個(gè)命題:①當(dāng)時(shí),存在實(shí)數(shù)m,使函數(shù)恰有5個(gè)不同的零點(diǎn);②若,函數(shù)的零點(diǎn)不超過4個(gè),則;③對(duì),,函數(shù)恰有4個(gè)不同的零點(diǎn),且這4個(gè)零點(diǎn)可以組成等差數(shù)列.其中,正確命題的序號(hào)是_______.15.已知函數(shù),,若函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________.16.從2、3、5、7、11、13這六個(gè)質(zhì)數(shù)中任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時(shí),證明:對(duì)于任意,若,則直線與曲線有唯一公共點(diǎn)(注:當(dāng)時(shí),直線與曲線的交點(diǎn)在y軸兩側(cè)).18.(12分)如圖,在直三棱柱中,,點(diǎn)P,Q分別為,的中點(diǎn).求證:(1)PQ平面;(2)平面.19.(12分)已知直線過橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,(1)求橢圓的方程;(2)過原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.20.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若存在,使得不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.21.(12分)如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)證明;AC⊥BP;(Ⅱ)求直線AD與平面APC所成角的正弦值.22.(10分)如圖,在矩形中,,,點(diǎn)分別是線段的中點(diǎn),分別將沿折起,沿折起,使得重合于點(diǎn),連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當(dāng)按照進(jìn)行分配時(shí),則有種不同的方案;當(dāng)按照進(jìn)行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點(diǎn)睛】本題考查排列組合、數(shù)學(xué)文化,還考查數(shù)學(xué)建模能力以及分類討論思想,屬于中檔題.2、D【解析】令x=1得a=1.故原式=.的通項(xiàng),由5-2r=1得r=2,對(duì)應(yīng)的常數(shù)項(xiàng)=80,由5-2r=-1得r=3,對(duì)應(yīng)的常數(shù)項(xiàng)=-40,故所求的常數(shù)項(xiàng)為40,選D解析2.用組合提取法,把原式看做6個(gè)因式相乘,若第1個(gè)括號(hào)提出x,從余下的5個(gè)括號(hào)中選2個(gè)提出x,選3個(gè)提出;若第1個(gè)括號(hào)提出,從余下的括號(hào)中選2個(gè)提出,選3個(gè)提出x.故常數(shù)項(xiàng)==-40+80=403、A【解析】

構(gòu)造函數(shù),通過分析的單調(diào)性和對(duì)稱性,求得不等式的解集.【詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動(dòng)一個(gè)單位得到,的定義域?yàn)?,且,所以為奇函?shù),圖像關(guān)于原點(diǎn)對(duì)稱,所以圖像關(guān)于對(duì)稱.不等式等價(jià)于,等價(jià)于,注意到,結(jié)合圖像關(guān)于對(duì)稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對(duì)稱性解不等式,屬于中檔題.4、A【解析】試題分析:因?yàn)榈恼归_式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.5、A【解析】

根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點(diǎn)睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.6、A【解析】

利用復(fù)數(shù)除法運(yùn)算化簡(jiǎn),由此求得對(duì)應(yīng)點(diǎn)所在象限.【詳解】依題意,對(duì)應(yīng)點(diǎn)為,在第一象限.故選A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)所在象限,屬于基礎(chǔ)題.7、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點(diǎn)睛】本題考查利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎(chǔ)題.8、D【解析】

原問題轉(zhuǎn)化為有四個(gè)不同的實(shí)根,換元處理令t,對(duì)g(t)進(jìn)行零點(diǎn)個(gè)數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時(shí),g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個(gè)不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實(shí)數(shù)a的取值范圍是(2,2).故選:D.【點(diǎn)睛】此題考查方程的根與函數(shù)零點(diǎn)問題,關(guān)鍵在于等價(jià)轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.9、D【解析】

由側(cè)棱與底面所成角及底面邊長(zhǎng)求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長(zhǎng)為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.10、A【解析】

取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.11、C【解析】

首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個(gè)表達(dá)式,在中,可以計(jì)算出的一個(gè)表達(dá)式,根據(jù)長(zhǎng)度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點(diǎn),由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點(diǎn)由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【點(diǎn)睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.12、A【解析】

分別代值計(jì)算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

,

故選:A.【點(diǎn)睛】本題考查數(shù)列的周期性和運(yùn)用:求數(shù)列中的項(xiàng),考查運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

本題首先可以根據(jù)將化簡(jiǎn)為,然后根據(jù)基本不等式即可求出最小值.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng),即、時(shí)取等號(hào),故答案為:.【點(diǎn)睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時(shí)候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.14、①②③【解析】

根據(jù)偶函數(shù)的圖象關(guān)于軸對(duì)稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:當(dāng)時(shí)又因?yàn)闉榕己瘮?shù)可畫出的圖象,如下所示:可知當(dāng)時(shí)有5個(gè)不同的零點(diǎn);故①正確;若,函數(shù)的零點(diǎn)不超過4個(gè),即,與的交點(diǎn)不超過4個(gè),時(shí)恒成立又當(dāng)時(shí),在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點(diǎn)不超過個(gè),則,故②正確;對(duì),偶函數(shù)的圖象,如下所示:,使得直線與恰有4個(gè)不同的交點(diǎn)點(diǎn),且相鄰點(diǎn)之間的距離相等,故③正確.故答案為:①②③【點(diǎn)睛】本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.15、【解析】

先根據(jù)題意,求出的解得或,然后求出f(x)的導(dǎo)函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個(gè)不同的零點(diǎn)x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個(gè)不同的零點(diǎn),即+m=0有兩個(gè)不同的解,解之得即或因?yàn)榈膶?dǎo)函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個(gè)不同的零點(diǎn),(1)有兩個(gè)不同的解,此時(shí)有一個(gè)解;(2)有兩個(gè)不同的解,此時(shí)有一個(gè)解當(dāng)有兩個(gè)不同的解,此時(shí)有一個(gè)解,此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=-m,此時(shí)有兩個(gè)不同的解,此時(shí)有一個(gè)解此時(shí),不符合題意;或是不符合題意;所以只能是解得,此時(shí)=,綜上:的取值范圍是故答案為【點(diǎn)睛】本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.16、【解析】

依據(jù)古典概型的計(jì)算公式,分別求“任取兩個(gè)數(shù)”和“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件數(shù),計(jì)算即可?!驹斀狻俊叭稳蓚€(gè)數(shù)”的事件數(shù)為,“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個(gè),所以任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是?!军c(diǎn)睛】本題主要考查古典概型的概率求法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析;(3)見解析【解析】

(1)需滿足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構(gòu)造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3)將問題轉(zhuǎn)化為證明有唯一實(shí)數(shù)解,對(duì)求導(dǎo),判斷其單調(diào)性,結(jié)合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調(diào)遞減,在上單調(diào)遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實(shí)數(shù)解;當(dāng)時(shí),;當(dāng)時(shí),;即對(duì)于任意實(shí)數(shù),一定有解;;當(dāng)時(shí),有兩個(gè)極值點(diǎn);函數(shù)在,,上單調(diào)遞增,在上單調(diào)遞減;又;只需,在時(shí)恒成立;只需;令,其中一個(gè)正解是;,;單調(diào)遞增,,(1);;;綜上得證.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)證明不等式,考查了轉(zhuǎn)化思想、不等式的放縮,屬難題.18、(1)見解析(2)見解析【解析】

(1)取的中點(diǎn)D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線且交于點(diǎn),由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點(diǎn)D,連結(jié),.在中,P,D分別為,中點(diǎn),,且.在直三棱柱中,,.Q為棱的中點(diǎn),,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點(diǎn),.由(1)知,,.又,平面,平面,平面.【點(diǎn)睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.19、(1)(2)【解析】

(1)由直線可得橢圓右焦點(diǎn)的坐標(biāo)為,由中點(diǎn)可得,且由斜率公式可得,由點(diǎn)在橢圓上,則,二者作差,進(jìn)而代入整理可得,即可求解;(2)設(shè)直線,點(diǎn)到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長(zhǎng)公式求得,利用點(diǎn)到直線距離求得,根據(jù)直線l與線段AB(不含端點(diǎn))相交,可得,即,進(jìn)而整理?yè)Q元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(1)直線與x軸交于點(diǎn),所以橢圓右焦點(diǎn)的坐標(biāo)為,故,因?yàn)榫€段AB的中點(diǎn)是,設(shè),則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設(shè)直線,代入,得,解得或,設(shè),則,則,因?yàn)榈街本€的距離分別是,由于直線l與線段AB(不含端點(diǎn))相交,所以,即,所以,四邊形的面積,令,,則,所以,當(dāng),即時(shí),,因此四邊形面積的最大值為.【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程,考查橢圓中的四邊形面積問題,考查直線與橢圓的位置關(guān)系的應(yīng)用,考查運(yùn)算能力.20、(Ⅰ).(Ⅱ).【解析】

(Ⅰ)時(shí),根據(jù)絕對(duì)值不等式的定義去掉絕對(duì)值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價(jià)于,求出在的最小值即可.【詳解】(Ⅰ)當(dāng)時(shí),時(shí),不等式化為,解得,即時(shí),不等式化為,不等式恒成立,即時(shí),不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對(duì)任意恒成立當(dāng)時(shí),取得最小值為實(shí)數(shù)的取值范圍是【點(diǎn)睛】本題考查了絕對(duì)值不等式的解法與應(yīng)用問題,也考查了函數(shù)絕對(duì)值三角不等式的應(yīng)用問題,屬于常規(guī)題型.21、(Ⅰ)見解析(Ⅱ).【解析】

(I)取的中點(diǎn),連接,通過證明平面得出;(II)以為原點(diǎn)建立坐標(biāo)系,求出平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論