版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,則元素個(gè)數(shù)為()A.1 B.2 C.3 D.42.已知復(fù)數(shù)滿(mǎn)足(是虛數(shù)單位),則=()A. B. C. D.3.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對(duì)稱(chēng) B.關(guān)于點(diǎn)對(duì)稱(chēng)C.周期為 D.在上是增函數(shù)4.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β5.若直線經(jīng)過(guò)拋物線的焦點(diǎn),則()A. B. C.2 D.6.設(shè)復(fù)數(shù)滿(mǎn)足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為則()A. B.C. D.7.已知是函數(shù)圖象上的一點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.8.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.9.如圖,在平行四邊形中,為對(duì)角線的交點(diǎn),點(diǎn)為平行四邊形外一點(diǎn),且,,則()A. B.C. D.10.已知等差數(shù)列滿(mǎn)足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.411.函數(shù)的圖象大致為()A. B.C. D.12.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校高二(4)班統(tǒng)計(jì)全班同學(xué)中午在食堂用餐時(shí)間,有7人用時(shí)為6分鐘,有14人用時(shí)7分鐘,有15人用時(shí)為8分鐘,還有4人用時(shí)為10分鐘,則高二(4)班全體同學(xué)用餐平均用時(shí)為_(kāi)___分鐘.14.已知曲線,點(diǎn),在曲線上,且以為直徑的圓的方程是.則_______.15.函數(shù)在的零點(diǎn)個(gè)數(shù)為_(kāi)_______.16.已知實(shí)數(shù)a,b,c滿(mǎn)足,則的最小值是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.18.(12分)如圖1,在邊長(zhǎng)為4的正方形中,是的中點(diǎn),是的中點(diǎn),現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.19.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.20.(12分)設(shè)數(shù)列,的各項(xiàng)都是正數(shù),為數(shù)列的前n項(xiàng)和,且對(duì)任意,都有,,,(e是自然對(duì)數(shù)的底數(shù)).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.21.(12分)如圖,在四棱柱中,平面,底面ABCD滿(mǎn)足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.22.(10分)已知函數(shù)(為常數(shù))(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
作出兩集合所表示的點(diǎn)的圖象,可得選項(xiàng).【詳解】由題意得,集合A表示以原點(diǎn)為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點(diǎn),作出兩集合所表示的點(diǎn)的示意圖如下圖所示,得出兩個(gè)圖象有兩個(gè)交點(diǎn):點(diǎn)A和點(diǎn)B,所以?xún)蓚€(gè)集合有兩個(gè)公共元素,所以元素個(gè)數(shù)為2,故選:B.【點(diǎn)睛】本題考查集合的交集運(yùn)算,關(guān)鍵在于作出集合所表示的點(diǎn)的圖象,再運(yùn)用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.2、A【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】解:由,得,.故選.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.3、D【解析】
當(dāng)時(shí),,∴f(x)不關(guān)于直線對(duì)稱(chēng);當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對(duì)稱(chēng);f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).4、B【解析】
根據(jù)線面平行、線面垂直和空間角的知識(shí),判斷A選項(xiàng)的正確性.由線面平行有關(guān)知識(shí)判斷B選項(xiàng)的正確性.根據(jù)面面垂直的判定定理,判斷C選項(xiàng)的正確性.根據(jù)面面平行的性質(zhì)判斷D選項(xiàng)的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點(diǎn)睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.5、B【解析】
計(jì)算拋物線的交點(diǎn)為,代入計(jì)算得到答案.【詳解】可化為,焦點(diǎn)坐標(biāo)為,故.故選:.【點(diǎn)睛】本題考查了拋物線的焦點(diǎn),屬于簡(jiǎn)單題.6、B【解析】
根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡(jiǎn)即可求解.【詳解】在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.7、C【解析】
先畫(huà)出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時(shí)等號(hào)成立).故選:C【點(diǎn)睛】此題考查的是兩個(gè)向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.8、C【解析】
利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對(duì)于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對(duì)于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對(duì)于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見(jiàn)的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.9、D【解析】
連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運(yùn)算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點(diǎn)睛】本題考查向量的線性運(yùn)算問(wèn)題,屬于基礎(chǔ)題10、D【解析】
先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因?yàn)槌傻缺葦?shù)列,所以,解得.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式.屬于簡(jiǎn)單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.11、A【解析】
確定函數(shù)在定義域內(nèi)的單調(diào)性,計(jì)算時(shí)的函數(shù)值可排除三個(gè)選項(xiàng).【詳解】時(shí),函數(shù)為減函數(shù),排除B,時(shí),函數(shù)也是減函數(shù),排除D,又時(shí),,排除C,只有A可滿(mǎn)足.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過(guò)解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱(chēng)性等等排除,可通過(guò)特殊的函數(shù)值,函數(shù)值的正負(fù),函數(shù)值的變化趨勢(shì)排除,最后剩下的一個(gè)即為正確選項(xiàng).12、A【解析】
根據(jù)實(shí)數(shù)滿(mǎn)足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問(wèn)題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問(wèn)題的解法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、7.5【解析】
分別求出所有人用時(shí)總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點(diǎn)睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計(jì)算出所有數(shù)據(jù)之和,易錯(cuò)點(diǎn)在于概念辨析不清導(dǎo)致計(jì)算出錯(cuò).14、【解析】
設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長(zhǎng)公式即可求解.【詳解】因?yàn)槭菆A的直徑,必過(guò)圓心點(diǎn),設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,故兩式相減,可得(因?yàn)槭堑闹悬c(diǎn)),即聯(lián)立直線與的方程:又,即,即又因?yàn)?,則有即∴.故答案為:【點(diǎn)睛】本題考查了直線與圓錐曲線的位置關(guān)系、弦長(zhǎng)公式,考查了學(xué)生的計(jì)算能力,綜合性比較強(qiáng),屬于中檔題.15、【解析】
求出的范圍,再由函數(shù)值為零,得到的取值可得零點(diǎn)個(gè)數(shù).【詳解】詳解:由題可知,或解得,或故有3個(gè)零點(diǎn).【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點(diǎn),屬于基礎(chǔ)題.16、【解析】
先分離出,應(yīng)用基本不等式轉(zhuǎn)化為關(guān)于c的二次函數(shù),進(jìn)而求出最小值.【詳解】解:若取最小值,則異號(hào),,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:【點(diǎn)睛】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點(diǎn)列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿(mǎn)足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對(duì)于任意實(shí)數(shù)都成立,所以.此時(shí),則.由,解得.當(dāng)x變化時(shí),與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于“直線與曲線,有且只有兩個(gè)公共點(diǎn)”.對(duì)函數(shù)求導(dǎo),得.由,解得,.當(dāng)x變化時(shí),與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.又因?yàn)?,,,,所以?dāng)或時(shí),直線與曲線,有且只有兩個(gè)公共點(diǎn).即當(dāng)或時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問(wèn)題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問(wèn)題,從而構(gòu)建不等式求解.18、(1)證明見(jiàn)解析;(2).【解析】
(1)利用線面平行的定義證明即可(2)取的中點(diǎn),并分別連接,,然后,證明相應(yīng)的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,利用坐標(biāo)運(yùn)算進(jìn)行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點(diǎn),所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點(diǎn),并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個(gè)法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明以及利用空間向量求解線面角問(wèn)題,屬于基礎(chǔ)題19、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】
(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦定理解三角形,進(jìn)行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當(dāng)時(shí),即,則由,,得,則,此時(shí),的面積為;②當(dāng)時(shí),則,即,則由,解得,,.綜上,的面積為.【點(diǎn)睛】本題考查正弦型函數(shù)的周期和單調(diào)區(qū)間的求解,同時(shí)也考查了三角形面積的計(jì)算,涉及余弦定理解三角形的應(yīng)用,考查計(jì)算能力,屬于中等題.20、(1),(2)【解析】
(1)當(dāng)時(shí),,與作差可得,即可得到數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,即可求解;對(duì)取自然對(duì)數(shù),則,即是以1為首項(xiàng),以2為公比的等比數(shù)列,即可求解;(2)由(1)可得,再利用錯(cuò)位相減法求解即可.【詳解】解:(1)因?yàn)?,①當(dāng)時(shí),,解得;當(dāng)時(shí),有,②由①②得,,又,所以,即數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,故,又因?yàn)?且,取自然對(duì)數(shù)得,所以,又因?yàn)?所以是以1為首項(xiàng),以2為公比的等比數(shù)列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)公式,考查錯(cuò)位相減法求數(shù)列的和.21、(Ⅰ)證明見(jiàn)解析;(Ⅱ)【解析】
(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計(jì)算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點(diǎn)睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計(jì)算能力.22、(Ⅰ)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(Ⅱ).【解析】
(Ⅰ)對(duì)函數(shù)進(jìn)行求
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年土地證抵押貸款協(xié)議3篇
- 漯河職業(yè)技術(shù)學(xué)院《化工分離工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度施工現(xiàn)場(chǎng)消防通道及安全標(biāo)志設(shè)置服務(wù)協(xié)議3篇
- 洛陽(yáng)師范學(xué)院《電磁場(chǎng)與電磁波》2023-2024學(xué)年第一學(xué)期期末試卷
- 洛陽(yáng)科技職業(yè)學(xué)院《數(shù)字設(shè)備與裝置》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年展會(huì)贊助:商業(yè)贊助與合作協(xié)議3篇
- 2024年度云計(jì)算服務(wù)具體服務(wù)內(nèi)容合同3篇
- 2024年度專(zhuān)業(yè)牛羊養(yǎng)殖場(chǎng)規(guī)模化購(gòu)銷(xiāo)合同書(shū)3篇
- 臨時(shí)咖啡師招募合同
- 2024年班組工人勞動(dòng)安全合同3篇
- 新疆維吾爾自治區(qū)伊犁哈薩克自治州各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)及行政區(qū)劃代碼
- 五年級(jí)上冊(cè)數(shù)學(xué)課件-9.3 圖形王國(guó)丨蘇教版 (共16張PPT)
- 蘇教版四年級(jí)英語(yǔ)上冊(cè)期末試卷
- 艾肯MICU聲卡安裝調(diào)試教程
- EAP培訓(xùn)(共47張)(PPT 47頁(yè))
- 更改通知單模版
- 酒店部門(mén)崗位職責(zé)組織結(jié)構(gòu)圖
- 最完整平面設(shè)計(jì)費(fèi)價(jià)目表50125
- 地理專(zhuān)業(yè)英語(yǔ)詞匯
- 2022年《職教法》職業(yè)教育解讀PPT
- 健康體檢中心管理規(guī)范
評(píng)論
0/150
提交評(píng)論