版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.2.如圖,在矩形ABCD中,E是AD上一點(diǎn),沿CE折疊△CDE,點(diǎn)D恰好落在AC的中點(diǎn)F處,若CD=,則△ACE的面積為()A.1 B. C.2 D.23.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱(chēng)軸為直線(xiàn)x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個(gè)根為﹣,其中正確的結(jié)論個(gè)數(shù)是()A.1 B.2 C.3 D.44.北京故宮的占地面積達(dá)到720000平方米,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為()A.0.72×106平方米 B.7.2×106平方米C.72×104平方米 D.7.2×105平方米5.估算的值在(
)A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間6.如圖是小強(qiáng)用八塊相同的小正方體搭建的一個(gè)積木,它的左視圖是()A. B. C. D.7.在一些美術(shù)字中,有的漢字是軸對(duì)稱(chēng)圖形.下面4個(gè)漢字中,可以看作是軸對(duì)稱(chēng)圖形的是()A. B. C. D.8.如圖,平行四邊形ABCD的周長(zhǎng)為12,∠A=60°,設(shè)邊AB的長(zhǎng)為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關(guān)系的圖象大致是()A. B. C. D.9.如圖,,則的度數(shù)為()A.115° B.110° C.105° D.65°10.計(jì)算的結(jié)果是()A.a(chǎn)2 B.-a2 C.a(chǎn)4 D.-a411.二次函數(shù)y=-x2-4x+5的最大值是()A.-7 B.5 C.0 D.912.3月22日,美國(guó)宣布將對(duì)約600億美元進(jìn)口自中國(guó)的商品加征關(guān)稅,中國(guó)商務(wù)部隨即公布擬對(duì)約30億美元自美進(jìn)口商品加征關(guān)稅,并表示,中國(guó)不希望打貿(mào)易戰(zhàn),但絕不懼怕貿(mào)易戰(zhàn),有信心,有能力應(yīng)對(duì)任何挑戰(zhàn).將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為()A.3×109 B.3×108 C.30×108 D.0.3×1010二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.甲、乙兩車(chē)分別從A、B兩地同時(shí)出發(fā),相向行駛,已知甲車(chē)的速度大于乙車(chē)的速度,甲車(chē)到達(dá)B地后馬上以另一速度原路返回A地(掉頭的時(shí)間忽略不計(jì)),乙車(chē)到達(dá)A地以后即停在地等待甲車(chē).如圖所示為甲乙兩車(chē)間的距離y(千米)與甲車(chē)的行駛時(shí)間t(小時(shí))之間的函數(shù)圖象,則當(dāng)乙車(chē)到達(dá)A地的時(shí)候,甲車(chē)與A地的距離為_(kāi)____千米.14.我國(guó)經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問(wèn)題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn)水深,葭長(zhǎng)各幾何?”題意是:有一正方形池塘,邊長(zhǎng)為一丈,有棵蘆葦長(zhǎng)在它的正中央,高出水面部分有一尺長(zhǎng),把蘆葦拉向岸邊,恰好碰到岸沿,問(wèn)水深和蘆葦長(zhǎng)各是多少?(小知識(shí):1丈=10尺)如果設(shè)水深為x尺,則蘆葦長(zhǎng)用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.15.因式分解:x2﹣10x+24=_____.16.因式分解:4x2y﹣9y3=_____.17.在一個(gè)不透明的盒子中裝有8個(gè)白球,若干個(gè)黃球,它們除顏色不同外,其余均相同.若從中隨機(jī)摸出一個(gè)球,它是白球的概率為,則黃球的個(gè)數(shù)為_(kāi)_____.18.分解因式:4m2﹣16n2=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當(dāng)AE為何值時(shí),△AEF的面積最大?20.(6分)如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)y=的圖象上.(1)求反比例函數(shù)y=的表達(dá)式;(2)在x軸上是否存在一點(diǎn)P,使得S△AOP=S△AOB,若存在,求所有符合條件點(diǎn)P的坐標(biāo);若不存在,簡(jiǎn)述你的理由.21.(6分)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線(xiàn)y=ax2+bx+3交x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).(1)求此拋物線(xiàn)的解析式;(2)如圖2,點(diǎn)D為拋物線(xiàn)的頂點(diǎn),連接CD,點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動(dòng),過(guò)點(diǎn)P作PE∥y軸交線(xiàn)段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線(xiàn)段PE長(zhǎng)為d,寫(xiě)出d與t的關(guān)系式(不要求寫(xiě)出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動(dòng)點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時(shí),求此時(shí)點(diǎn)P的坐標(biāo).22.(8分)為了落實(shí)國(guó)務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶(hù)生產(chǎn)經(jīng)銷(xiāo)一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+1.設(shè)這種產(chǎn)品每天的銷(xiāo)售利潤(rùn)為w元.求w與x之間的函數(shù)關(guān)系式.該產(chǎn)品銷(xiāo)售價(jià)定為每千克多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?如果物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于每千克28元,該農(nóng)戶(hù)想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為每千克多少元?23.(8分)對(duì)于平面直角坐標(biāo)系中的點(diǎn),將它的縱坐標(biāo)與橫坐標(biāo)的比稱(chēng)為點(diǎn)的“理想值”,記作.如的“理想值”.(1)①若點(diǎn)在直線(xiàn)上,則點(diǎn)的“理想值”等于_______;②如圖,,的半徑為1.若點(diǎn)在上,則點(diǎn)的“理想值”的取值范圍是_______.(2)點(diǎn)在直線(xiàn)上,的半徑為1,點(diǎn)在上運(yùn)動(dòng)時(shí)都有,求點(diǎn)的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點(diǎn),當(dāng)時(shí),畫(huà)出滿(mǎn)足條件的最大圓,并直接寫(xiě)出相應(yīng)的半徑的值.(要求畫(huà)圖位置準(zhǔn)確,但不必尺規(guī)作圖)24.(10分)先化簡(jiǎn),再選擇一個(gè)你喜歡的數(shù)(要合適哦!)代入求值:1+125.(10分)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長(zhǎng)相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關(guān)系,并說(shuō)明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長(zhǎng).26.(12分)頂點(diǎn)為D的拋物線(xiàn)y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線(xiàn)y=﹣x+m經(jīng)過(guò)點(diǎn)C,交x軸于E(4,0).求出拋物線(xiàn)的解析式;如圖1,點(diǎn)M為線(xiàn)段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作x軸的垂線(xiàn),垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線(xiàn),交直線(xiàn)y=﹣x+m于G,交拋物線(xiàn)于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).27.(12分)如圖,在中,點(diǎn)是的中點(diǎn),點(diǎn)是線(xiàn)段的延長(zhǎng)線(xiàn)上的一動(dòng)點(diǎn),連接,過(guò)點(diǎn)作的平行線(xiàn),與線(xiàn)段的延長(zhǎng)線(xiàn)交于點(diǎn),連接、.求證:四邊形是平行四邊形.若,,則在點(diǎn)的運(yùn)動(dòng)過(guò)程中:①當(dāng)______時(shí),四邊形是矩形;②當(dāng)______時(shí),四邊形是菱形.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點(diǎn)睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個(gè)角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.2、B【解析】
由折疊的性質(zhì)可得CD=CF=,DE=EF,AC=,由三角形面積公式可求EF的長(zhǎng),即可求△ACE的面積.【詳解】解:∵點(diǎn)F是AC的中點(diǎn),∴AF=CF=AC,∵將△CDE沿CE折疊到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故選B.【點(diǎn)睛】本題考查了翻折變換,勾股定理,熟練運(yùn)用三角形面積公式求得DE=EF=1是解決本題的關(guān)鍵.3、B【解析】
由二次函數(shù)圖象的開(kāi)口方向、對(duì)稱(chēng)軸及與y軸的交點(diǎn)可分別判斷出a、b、c的符號(hào),從而可判斷①;由對(duì)稱(chēng)軸=2可知a=,由圖象可知當(dāng)x=1時(shí),y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結(jié)合③可判斷④;從而可得出答案.【詳解】解:∵圖象開(kāi)口向下,∴a<0,∵對(duì)稱(chēng)軸為直線(xiàn)x=2,∴>0,∴b>0,∵與y軸的交點(diǎn)在x軸的下方,∴c<0,∴abc>0,故①錯(cuò)誤.∵對(duì)稱(chēng)軸為直線(xiàn)x=2,∴=2,∴a=,∵由圖象可知當(dāng)x=1時(shí),y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯(cuò)誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設(shè)方程的一個(gè)根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時(shí)乘c可得ac2-bc+c=0,∴方程有一個(gè)根為x=-c,由③可知-c=OA,而當(dāng)x=OA是方程的根,∴x=-c是方程的根,即假設(shè)成立,故④正確.綜上可知正確的結(jié)論有三個(gè):③④.故選B.【點(diǎn)睛】本題主要考查二次函數(shù)的圖象和性質(zhì).熟練掌握?qǐng)D象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.4、D【解析】試題分析:把一個(gè)數(shù)記成a×10n(1≤a<10,n整數(shù)位數(shù)少1)的形式,叫做科學(xué)記數(shù)法.∴此題可記為1.2×105平方米.考點(diǎn):科學(xué)記數(shù)法5、C【解析】
由可知56,即可解出.【詳解】∵∴56,故選C.【點(diǎn)睛】此題主要考查了無(wú)理數(shù)的估算,掌握無(wú)理數(shù)的估算是解題的關(guān)鍵.6、D【解析】
左視圖從左往右,2列正方形的個(gè)數(shù)依次為2,1,依此得出圖形D正確.故選D.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?、A【解析】
根據(jù)軸對(duì)稱(chēng)圖形的概念判斷即可.【詳解】A、是軸對(duì)稱(chēng)圖形;B、不是軸對(duì)稱(chēng)圖形;C、不是軸對(duì)稱(chēng)圖形;D、不是軸對(duì)稱(chēng)圖形.故選:A.【點(diǎn)睛】本題考查的是軸對(duì)稱(chēng)圖形的概念.軸對(duì)稱(chēng)圖形的關(guān)鍵是尋找對(duì)稱(chēng)軸,圖形兩部分折疊后可重合.8、C【解析】
過(guò)點(diǎn)B作BE⊥AD于E,構(gòu)建直角△ABE,通過(guò)解該直角三角形求得BE的長(zhǎng)度,然后利用平行四邊形的面積公式列出函數(shù)關(guān)系式,結(jié)合函數(shù)關(guān)系式找到對(duì)應(yīng)的圖像.【詳解】如圖,過(guò)點(diǎn)B作BE⊥AD于E.∵∠A=60°,設(shè)AB邊的長(zhǎng)為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長(zhǎng)為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開(kāi)口向下的拋物線(xiàn)的一部分,觀察選項(xiàng),C符合題意.故選C.【點(diǎn)睛】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關(guān)系式是解題的關(guān)鍵.9、A【解析】
根據(jù)對(duì)頂角相等求出∠CFB=65°,然后根據(jù)CD∥EB,判斷出∠B=115°.【詳解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°?65°=115°,故選:A.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì),知道“兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)”是解題的關(guān)鍵.10、D【解析】
直接利用同底數(shù)冪的乘法運(yùn)算法則計(jì)算得出答案.【詳解】解:,故選D.【點(diǎn)睛】此題主要考查了同底數(shù)冪的乘法運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.11、D【解析】
直接利用配方法得出二次函數(shù)的頂點(diǎn)式進(jìn)而得出答案.【詳解】y=﹣x2﹣4x+5=﹣(x+2)2+9,即二次函數(shù)y=﹣x2﹣4x+5的最大值是9,故選D.【點(diǎn)睛】此題主要考查了二次函數(shù)的最值,正確配方是解題關(guān)鍵.12、A【解析】
科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同當(dāng)原數(shù)絕對(duì)值時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值時(shí),n是負(fù)數(shù).【詳解】將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為,故選A.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、630【解析】分析:兩車(chē)相向而行5小時(shí)共行駛了900千米可得兩車(chē)的速度之和為180千米/時(shí),當(dāng)相遇后車(chē)共行駛了720千米時(shí),甲車(chē)到達(dá)B地,由此則可求得兩車(chē)的速度.再根據(jù)甲車(chē)返回到A地總用時(shí)16.5小時(shí),求出甲車(chē)返回時(shí)的速度即可求解.詳解:設(shè)甲車(chē),乙車(chē)的速度分別為x千米/時(shí),y千米/時(shí),甲車(chē)與乙車(chē)相向而行5小時(shí)相遇,則5(x+y)=900,解得x+y=180,相遇后當(dāng)甲車(chē)到達(dá)B地時(shí)兩車(chē)相距720千米,所需時(shí)間為720÷180=4小時(shí),則甲車(chē)從A地到B需要9小時(shí),故甲車(chē)的速度為900÷9=100千米/時(shí),乙車(chē)的速度為180-100=80千米/時(shí),乙車(chē)行駛900-720=180千米所需時(shí)間為180÷80=2.25小時(shí),甲車(chē)從B地到A地的速度為900÷(16.5-5-4)=120千米/時(shí).所以甲車(chē)從B地向A地行駛了120×2.25=270千米,當(dāng)乙車(chē)到達(dá)A地時(shí),甲車(chē)離A地的距離為900-270=630千米.點(diǎn)睛:利用函數(shù)圖象解決實(shí)際問(wèn)題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標(biāo)表示的意義,抓住交點(diǎn),起點(diǎn).終點(diǎn)等關(guān)鍵點(diǎn),理解問(wèn)題的發(fā)展過(guò)程,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,從而將這個(gè)數(shù)學(xué)問(wèn)題變化為解答實(shí)際問(wèn)題.14、(x+1);.【解析】試題分析:設(shè)水深為x尺,則蘆葦長(zhǎng)用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點(diǎn):由實(shí)際問(wèn)題抽象出一元二次方程;勾股定理的應(yīng)用.15、(x﹣4)(x﹣6)【解析】
因?yàn)?-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【詳解】x2﹣10x+24=x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【點(diǎn)睛】本題考查的是因式分解,熟練掌握因式分解的方法是解題的關(guān)鍵.16、y(2x+3y)(2x-3y)【解析】
直接提取公因式y(tǒng),再利用平方差公式分解因式即可.【詳解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確運(yùn)用公式是解題關(guān)鍵.17、1【解析】首先設(shè)黃球的個(gè)數(shù)為x個(gè),然后根據(jù)概率公式列方程即可求得答案.解:設(shè)黃球的個(gè)數(shù)為x個(gè),根據(jù)題意得:=2/3解得:x=1.∴黃球的個(gè)數(shù)為1.18、4(m+2n)(m﹣2n).【解析】
原式提取4后,利用平方差公式分解即可.【詳解】解:原式=4().故答案為【點(diǎn)睛】本題考查提公因式法與公式法的綜合運(yùn)用,解題的關(guān)鍵是熟練掌握因式分解的方法.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明見(jiàn)解析;(2)AE=2時(shí),△AEF的面積最大.【解析】
(1)根據(jù)正方形的性質(zhì),可得EF=CE,再根據(jù)∠CEF=∠90°,進(jìn)而可得∠FEH=∠DCE,結(jié)合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質(zhì)可得FH=ED;(2)設(shè)AE=a,用含a的函數(shù)表示△AEF的面積,再利用函數(shù)的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設(shè)AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當(dāng)AE=2時(shí),△AEF的面積最大.【點(diǎn)睛】本題考查了正方形性質(zhì)、矩形性質(zhì)以及全等三角形的判斷和性質(zhì)和三角形面積有關(guān)的知識(shí)點(diǎn),熟記全等三角形的各種判斷方法是解題的關(guān)鍵.20、(1)y=;(1)(﹣1,0)或(1,0)【解析】
(1)把A的坐標(biāo)代入反比例函數(shù)的表達(dá)式,即可求出答案;(1)求出∠A=60°,∠B=30°,求出線(xiàn)段OA和OB,求出△AOB的面積,根據(jù)已知S△AOPS△AOB,求出OP長(zhǎng),即可求出答案.【詳解】(1)把A(,1)代入反比例函數(shù)y得:k=1,所以反比例函數(shù)的表達(dá)式為y;(1)∵A(,1),OA⊥AB,AB⊥x軸于C,∴OC,AC=1,OA1.∵tanA,∴∠A=60°.∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA?OB1×1.∵S△AOPS△AOB,∴OP×AC.∵AC=1,∴OP=1,∴點(diǎn)P的坐標(biāo)為(﹣1,0)或(1,0).【點(diǎn)睛】本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,三角形的面積,解直角三角形等知識(shí)點(diǎn),求出反比例函數(shù)的解析式和求出△AOB的面積是解答此題的關(guān)鍵.21、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】
(1)由拋物線(xiàn)y=ax2+bx+3與y軸交于點(diǎn)A,可求得點(diǎn)A的坐標(biāo),又OA=OC,可求得點(diǎn)C的坐標(biāo),然后分別代入B,C的坐標(biāo)求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長(zhǎng)PE交x軸于點(diǎn)H,現(xiàn)將解析式換為頂點(diǎn)解析式求得D(1,4),設(shè)直線(xiàn)CD的解析式為y=kx+b,再將點(diǎn)C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當(dāng)x=0時(shí),y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線(xiàn)y=ax2+bx+3經(jīng)過(guò)點(diǎn)B(﹣1,0),C(3,0)∴,解得:,∴拋物線(xiàn)的解析式為:y=﹣x2+2x+3;(2)如圖1,延長(zhǎng)PE交x軸于點(diǎn)H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線(xiàn)CD的解析式為y=kx+b,將點(diǎn)C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長(zhǎng)PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)的相關(guān)知識(shí)點(diǎn).22、(1);(2)該產(chǎn)品銷(xiāo)售價(jià)定為每千克30元時(shí),每天銷(xiāo)售利潤(rùn)最大,最大銷(xiāo)售利潤(rùn)2元;(3)該農(nóng)戶(hù)想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為每千克25元.【解析】
(1)根據(jù)銷(xiāo)售額=銷(xiāo)售量×銷(xiāo)售價(jià)單x,列出函數(shù)關(guān)系式.(2)用配方法將(2)的函數(shù)關(guān)系式變形,利用二次函數(shù)的性質(zhì)求最大值.(3)把y=150代入(2)的函數(shù)關(guān)系式中,解一元二次方程求x,根據(jù)x的取值范圍求x的值.【詳解】解:(1)由題意得:,∴w與x的函數(shù)關(guān)系式為:.(2),∵﹣2<0,∴當(dāng)x=30時(shí),w有最大值.w最大值為2.答:該產(chǎn)品銷(xiāo)售價(jià)定為每千克30元時(shí),每天銷(xiāo)售利潤(rùn)最大,最大銷(xiāo)售利潤(rùn)2元.(3)當(dāng)w=150時(shí),可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.∵3>28,∴x2=3不符合題意,應(yīng)舍去.答:該農(nóng)戶(hù)想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為每千克25元.23、(1)①﹣3;②;(2);(3)【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點(diǎn)與原點(diǎn)連線(xiàn)與軸夾角越大,可得直線(xiàn)與相切時(shí)理想值最大,與x中相切時(shí),理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線(xiàn)相切時(shí),LQ取最小值和最大值,求出點(diǎn)橫坐標(biāo)即可;(3)根據(jù)題意將點(diǎn)轉(zhuǎn)化為直線(xiàn),點(diǎn)理想值最大時(shí)點(diǎn)在上,分析圖形即可.【詳解】(1)①∵點(diǎn)在直線(xiàn)上,∴,∴點(diǎn)的“理想值”=-3,故答案為:﹣3.②當(dāng)點(diǎn)在與軸切點(diǎn)時(shí),點(diǎn)的“理想值”最小為0.當(dāng)點(diǎn)縱坐標(biāo)與橫坐標(biāo)比值最大時(shí),的“理想值”最大,此時(shí)直線(xiàn)與切于點(diǎn),設(shè)點(diǎn)Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線(xiàn),∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點(diǎn)的“理想值”為,故答案為:.(2)設(shè)直線(xiàn)與軸、軸的交點(diǎn)分別為點(diǎn),點(diǎn),當(dāng)x=0時(shí),y=3,當(dāng)y=0時(shí),x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線(xiàn).當(dāng)與軸相切時(shí),LQ=0,相應(yīng)的圓心滿(mǎn)足題意,其橫坐標(biāo)取到最大值.作軸于點(diǎn),∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線(xiàn)相切時(shí),LQ=,相應(yīng)的圓心滿(mǎn)足題意,其橫坐標(biāo)取到最小值.作軸于點(diǎn),則.設(shè)直線(xiàn)與直線(xiàn)的交點(diǎn)為.∵直線(xiàn)中,k=,∴,∴,點(diǎn)F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(jìn)(2,m),∴M點(diǎn)在直線(xiàn)x=2上,∵,∴LQ取最大值時(shí),=,∴作直線(xiàn)y=x,與x=2交于點(diǎn)N,當(dāng)M與ON和x軸同時(shí)相切時(shí),半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點(diǎn)睛】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線(xiàn)的性質(zhì),解答時(shí)要注意做好數(shù)形結(jié)合,根據(jù)圖形進(jìn)行分類(lèi)討論.24、1【解析】解:(1+==取x=2時(shí),原式=125、(1)45°.(1)MN1=ND1+DH1.理由見(jiàn)解析;(3)11.【解析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結(jié)論;(1)由旋轉(zhuǎn)的性質(zhì)得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結(jié)論;(3)設(shè)正方形ABCD的邊長(zhǎng)為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉(zhuǎn)可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設(shè)正方形ABCD的邊長(zhǎng)為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個(gè)方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長(zhǎng)為11.【點(diǎn)睛】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質(zhì)、勾股定理、正方形的性質(zhì)等知識(shí),難度適中.26、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】
(1)將點(diǎn)E代入直線(xiàn)解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線(xiàn)解析式中,可求出拋物線(xiàn)解析式.(2)將拋物線(xiàn)解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線(xiàn)B
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廠房租賃保證金退還協(xié)議4篇
- 2025年度智能設(shè)備價(jià)格信息保密及市場(chǎng)推廣協(xié)議4篇
- 2025年度廠房租賃合同附帶員工宿舍租賃條款4篇
- 二零二四唐山骨瓷品牌創(chuàng)新設(shè)計(jì)研發(fā)合作協(xié)議3篇
- 2025年度企業(yè)品牌策劃合同范本(十)4篇
- 2024年04月江蘇上海浦發(fā)銀行南京分行在線(xiàn)視頻筆試歷年參考題庫(kù)附帶答案詳解
- 2024美容美發(fā)店加盟合同
- 2025年茶葉出口基地承包經(jīng)營(yíng)合同范本4篇
- 專(zhuān)項(xiàng)工程承攬協(xié)議樣本(2024年版)版B版
- 2024年03月浙江中國(guó)農(nóng)業(yè)銀行浙江省分行春季招考筆試歷年參考題庫(kù)附帶答案詳解
- 地理2024-2025學(xué)年人教版七年級(jí)上冊(cè)地理知識(shí)點(diǎn)
- 2024 消化內(nèi)科專(zhuān)業(yè) 藥物臨床試驗(yàn)GCP管理制度操作規(guī)程設(shè)計(jì)規(guī)范應(yīng)急預(yù)案
- 2024-2030年中國(guó)電子郵箱行業(yè)市場(chǎng)運(yùn)營(yíng)模式及投資前景預(yù)測(cè)報(bào)告
- 基礎(chǔ)設(shè)施零星維修 投標(biāo)方案(技術(shù)方案)
- 人力資源 -人效評(píng)估指導(dǎo)手冊(cè)
- 大疆80分鐘在線(xiàn)測(cè)評(píng)題
- 2024屆廣東省廣州市高三上學(xué)期調(diào)研測(cè)試英語(yǔ)試題及答案
- 中煤平朔集團(tuán)有限公司招聘筆試題庫(kù)2024
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 不付租金解除合同通知書(shū)
- 區(qū)域合作伙伴合作協(xié)議書(shū)范本
評(píng)論
0/150
提交評(píng)論