2022-2023學(xué)年湖南省長沙市重點(diǎn)達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第1頁
2022-2023學(xué)年湖南省長沙市重點(diǎn)達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第2頁
2022-2023學(xué)年湖南省長沙市重點(diǎn)達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第3頁
2022-2023學(xué)年湖南省長沙市重點(diǎn)達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第4頁
2022-2023學(xué)年湖南省長沙市重點(diǎn)達(dá)標(biāo)名校中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.將拋物線y=A.y=-12C.y=-122.若數(shù)a,b在數(shù)軸上的位置如圖示,則()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.a(chǎn)﹣b>0 D.﹣a﹣b>03.運(yùn)用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.4.在,,則的值為()A. B. C. D.5.計(jì)算(ab2)3的結(jié)果是()A.a(chǎn)b5 B.a(chǎn)b6 C.a(chǎn)3b5 D.a(chǎn)3b66.計(jì)算結(jié)果是()A.0 B.1 C.﹣1 D.x7.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機(jī)取出一顆棋子,取得白色棋子的概率是,如再往盒中放進(jìn)3顆黑色棋子,取得白色棋子的概率變?yōu)?,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆8.下列圖標(biāo)中,是中心對稱圖形的是()A. B.C. D.9.下列二次根式中,的同類二次根式是()A. B. C. D.10.某區(qū)10名學(xué)生參加市級漢字聽寫大賽,他們得分情況如上表:那么這10名學(xué)生所得分?jǐn)?shù)的平均數(shù)和眾數(shù)分別是()人數(shù)3421分?jǐn)?shù)80859095A.85和82.5 B.85.5和85 C.85和85 D.85.5和80二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),平行于x軸的直線與拋物線L:y=ax1相交于A,B兩點(diǎn)(點(diǎn)B在第一象限),點(diǎn)C在AB的延長線上.(1)已知a=1,點(diǎn)B的縱坐標(biāo)為1.如圖1,向右平移拋物線L使該拋物線過點(diǎn)B,與AB的延長線交于點(diǎn)C,AC的長為__.(1)如圖1,若BC=AB,過O,B,C三點(diǎn)的拋物線L3,頂點(diǎn)為P,開口向下,對應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a3,=__.12.我國古代《易經(jīng)》一書中記載,遠(yuǎn)古時(shí)期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個.13.在一個不透明的袋子里裝有一個黑球和兩個白球,它們除顏色外都相同,隨機(jī)從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機(jī)摸出一個球,兩次都摸到黑球的概率是__________.14.如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_____.15.一元二次方程有兩個不相等的實(shí)數(shù)根,則的取值范圍是________.16.已知(x-ay)(x+ay),那么a=_______三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和B(3,0),與y軸交于點(diǎn)C,點(diǎn)D的橫坐標(biāo)為m(0<m<3),連結(jié)DC并延長至E,使得CE=CD,連結(jié)BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點(diǎn)E的坐標(biāo),并求出點(diǎn)E縱坐標(biāo)的范圍;(3)求△BCE的面積最大值.18.(8分)綜合與實(shí)踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動點(diǎn)引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動時(shí),(1)中結(jié)論始終成立,為證明這兩個結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).19.(8分)如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線段AM上的點(diǎn),且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線段BC的長;(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.20.(8分)如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到矩形AB′C′D′,點(diǎn)C的對應(yīng)點(diǎn)C′恰好落在CB的延長線上,邊AB交邊C′D′于點(diǎn)E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.21.(8分)如圖,在中,,的垂直平分線交于,交于,射線上,并且.()求證:;()當(dāng)?shù)拇笮M足什么條件時(shí),四邊形是菱形?請回答并證明你的結(jié)論.22.(10分)先化簡,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.23.(12分)黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.(1)求A種,B種樹木每棵各多少元;(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場價(jià)九折優(yōu)惠,請?jiān)O(shè)計(jì)一種購買樹木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.24.如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點(diǎn)E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當(dāng)AB=8,CE=2時(shí),求AC的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

將拋物線y=12【詳解】由題意得,a=-12設(shè)旋轉(zhuǎn)180°以后的頂點(diǎn)為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉(zhuǎn)180°以后的頂點(diǎn)為(2,1),∴旋轉(zhuǎn)180°以后所得圖象的解析式為:y=-1故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象的旋轉(zhuǎn)變換,在繞拋物線某點(diǎn)旋轉(zhuǎn)180°以后,二次函數(shù)的開口大小沒有變化,方向相反;設(shè)旋轉(zhuǎn)前的的頂點(diǎn)為(x,y),旋轉(zhuǎn)中心為(a,b),由中心對稱的性質(zhì)可知新頂點(diǎn)坐標(biāo)為(2a-x,2b-y),從而可求出旋轉(zhuǎn)后的函數(shù)解析式.2、D【解析】

首先根據(jù)有理數(shù)a,b在數(shù)軸上的位置判斷出a、b兩數(shù)的符號,從而確定答案.【詳解】由數(shù)軸可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原選項(xiàng)錯誤;B.ab<0,故原選項(xiàng)錯誤;C.a-b<0,故原選項(xiàng)錯誤;D.,正確.故選D.【點(diǎn)睛】本題考查了數(shù)軸及有理數(shù)的乘法,數(shù)軸上的數(shù):右邊的數(shù)總是大于左邊的數(shù),從而確定a,b的大小關(guān)系.3、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點(diǎn)睛】本題考查扇形面積的計(jì)算,圓周角定理.本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關(guān)鍵.4、A【解析】

本題可以利用銳角三角函數(shù)的定義求解即可.【詳解】解:tanA=,

∵AC=2BC,

∴tanA=.

故選:A.【點(diǎn)睛】本題考查了正切函數(shù)的概念,掌握直角三角形中角的對邊與鄰邊的比是關(guān)鍵.5、D【解析】試題分析:根據(jù)積的乘方的性質(zhì)進(jìn)行計(jì)算,然后直接選取答案即可.試題解析:(ab2)3=a3?(b2)3=a3b1.故選D.考點(diǎn):冪的乘方與積的乘方.6、C【解析】試題解析:.故選C.考點(diǎn):分式的加減法.7、B【解析】試題解析:由題意得,解得:.故選B.8、B【解析】

根據(jù)中心對稱圖形的概念對各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項(xiàng)錯誤;B、是中心對稱圖形,故本選項(xiàng)正確;C、不是中心對稱圖形,故本選項(xiàng)錯誤;D、不是中心對稱圖形,故本選項(xiàng)錯誤.故選B.【點(diǎn)睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.9、C【解析】

先將每個選項(xiàng)的二次根式化簡后再判斷.【詳解】解:A:,與不是同類二次根式;B:被開方數(shù)是2x,故與不是同類二次根式;C:=,與是同類二次根式;D:=2,與不是同類二次根式.故選C.【點(diǎn)睛】本題考查了同類二次根式的概念.10、B【解析】

根據(jù)眾數(shù)及平均數(shù)的定義,即可得出答案.【詳解】解:這組數(shù)據(jù)中85出現(xiàn)的次數(shù)最多,故眾數(shù)是85;平均數(shù)=(80×3+85×4+90×2+95×1)=85.5.故選:B.【點(diǎn)睛】本題考查了眾數(shù)及平均數(shù)的知識,掌握各部分的概念是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、4﹣【解析】解:(1)當(dāng)a=1時(shí),拋物線L的解析式為:y=x1,當(dāng)y=1時(shí),1=x1,∴x=±,∵B在第一象限,∴A(﹣,1),B(,1),∴AB=1,∵向右平移拋物線L使該拋物線過點(diǎn)B,∴AB=BC=1,∴AC=4;(1)如圖1,設(shè)拋物線L3與x軸的交點(diǎn)為G,其對稱軸與x軸交于Q,過B作BK⊥x軸于K,設(shè)OK=t,則AB=BC=1t,∴B(t,at1),根據(jù)拋物線的對稱性得:OQ=1t,OG=1OQ=4t,∴O(0,0),G(4t,0),設(shè)拋物線L3的解析式為:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵該拋物線過點(diǎn)B(t,at1),∴at1=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案為(1)4;(1)﹣.點(diǎn)睛:本題考查二次函數(shù)的圖象和性質(zhì).熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.12、1【解析】分析:類比于現(xiàn)在我們的十進(jìn)制“滿十進(jìn)一”,可以表示滿六進(jìn)一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點(diǎn)睛:本題是以古代“結(jié)繩計(jì)數(shù)”為背景,按滿六進(jìn)一計(jì)數(shù),運(yùn)用了類比的方法,根據(jù)圖中的數(shù)學(xué)列式計(jì)算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識,另一方面也考查了學(xué)生的思維能力.13、1【解析】

首先根據(jù)題意列表,由列表求得所有等可能的結(jié)果與兩次都摸到黑球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實(shí)驗(yàn).【詳解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9種等可能的結(jié)果,兩次都摸到黑球的只有1種情況,∴兩次都摸到黑球的概率是19故答案為:19【點(diǎn)睛】考查概率的計(jì)算,掌握概率等于所求情況數(shù)與總情況數(shù)之比是解題的關(guān)鍵.14、72°【解析】

首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點(diǎn)睛】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵15、且【解析】

根據(jù)一元二次方程的根與判別式△的關(guān)系,結(jié)合一元二次方程的定義解答即可.【詳解】由題意可得,1?k≠0,△=4+4(1?k)>0,∴k<2且k≠1.故答案為k<2且k≠1.【點(diǎn)睛】本題主要考查了一元二次方程的根的判別式的應(yīng)用,解題中要注意不要漏掉對二次項(xiàng)系數(shù)1-k≠0的考慮.16、±4【解析】

根據(jù)平方差公式展開左邊即可得出答案.【詳解】∵(x-ay)(x+ay)=又(x-ay)(x+ay)∴解得:a=±4故答案為:±4.【點(diǎn)睛】本題考查的平方差公式:.三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當(dāng)m=1.5時(shí),S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點(diǎn)代入拋物線解析式即可;(2)設(shè),利用求線段中點(diǎn)的公式列出關(guān)于m的方程組,再利用0<m<1即可求解;(1)連結(jié)BD,過點(diǎn)D作x軸的垂線交BC于點(diǎn)H,由,設(shè)出點(diǎn)D的坐標(biāo),進(jìn)而求出點(diǎn)H的坐標(biāo),利用三角形的面積公式求出,再利用公式求二次函數(shù)的最值即可.詳解:(1)∵拋物線過點(diǎn)A(1,0)和B(1,0)(2)∵∴點(diǎn)C為線段DE中點(diǎn)設(shè)點(diǎn)E(a,b)∵0<m<1,∴當(dāng)m=1時(shí),縱坐標(biāo)最小值為2當(dāng)m=1時(shí),最大值為2∴點(diǎn)E縱坐標(biāo)的范圍為(1)連結(jié)BD,過點(diǎn)D作x軸的垂線交BC于點(diǎn)H∵CE=CD∴H(m,-m+1)∴當(dāng)m=1.5時(shí),.點(diǎn)睛:本題考查了二次函數(shù)的綜合題、待定系數(shù)法、一次函數(shù)等知識點(diǎn),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,會用方程的思想解決問題.18、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于AE對稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點(diǎn)睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).19、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設(shè)BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;(3)F是AB的中點(diǎn)知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.詳解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)為BC的中點(diǎn),∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵M(jìn)B=MN,∴△MBN為等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)設(shè)BM=CM=MN=a,∵四邊形DNBC是平行四邊形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(負(fù)值舍去),∴BC=2a=;(3)∵F是AB的中點(diǎn),∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.點(diǎn)睛:本題主要考查相似形的綜合問題,解題的關(guān)鍵是掌握等腰三角形三線合一的性質(zhì)、直角三角形和平行四邊形的性質(zhì)及全等三角形與相似三角形的判定與性質(zhì)等知識點(diǎn).20、(1)證明見解析;(2)AE=.【解析】

(1)連結(jié)AC、AC′,根據(jù)矩形的性質(zhì)得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論;(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質(zhì)得到BE=D′E,設(shè)AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】解::(1)連結(jié)AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四邊形ABCD為矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E與△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,設(shè)AE=x,則D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),勾股定理的應(yīng)用等,熟練掌握性質(zhì)定理是解題的關(guān)鍵.21、(1)見解析;(2)見解析【解析】

(1)求出EF∥AC,根據(jù)EF=AC,利用平行四邊形的判定推出四邊形ACEF是平行四邊形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根據(jù)菱形的判定推出即可.【詳解】(1)證明:∵∠ACB=90°,DE是BC的垂直平分線,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四邊形ACEF是平行四邊形,∴AF=CE;(2)當(dāng)∠B=30°時(shí),四邊形ACEF是菱形,證明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE是BC的垂直平分線,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=AB,∴CE=AC,∵四邊形ACEF是平行四邊形,∴四邊形ACEF是菱形,即當(dāng)∠B=30°時(shí),四邊形ACEF是菱形.【點(diǎn)睛】本題考查了菱形的判定平行四邊形的判定線段垂直平分線,含30度角的直角三角形性質(zhì),直角三角形斜邊上中線性質(zhì)等知識點(diǎn)的應(yīng)用綜合性比較強(qiáng),有一定的難度.22、﹣2【解析】【分析】先利用完全平方公式、平方差公式進(jìn)行展開,然后合并同類項(xiàng),最后代入x、y的值進(jìn)行計(jì)算即可得.【詳解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,當(dāng)x=+1,y=﹣1時(shí),原式=2×(+1)×(﹣1)=2×(3﹣2)=﹣2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論