版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓,直線與直線相交于點,且點在橢圓內恒成立,則橢圓的離心率取值范圍為()A. B. C. D.2.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.3.函數(shù)(或)的圖象大致是()A. B. C. D.4.設實數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.145.函數(shù)的定義域為()A. B. C. D.6.已知橢圓的左、右焦點分別為、,過點的直線與橢圓交于、兩點.若的內切圓與線段在其中點處相切,與相切于點,則橢圓的離心率為()A. B. C. D.7.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.8.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.9.在正項等比數(shù)列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.810.是虛數(shù)單位,則()A.1 B.2 C. D.11.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調遞增,設函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)12.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機變量,且,則______14.已知函數(shù)則______.15.已知函數(shù),若函數(shù)有6個零點,則實數(shù)的取值范圍是_________.16.已知角的終邊過點,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.18.(12分)設函數(shù),.(Ⅰ)討論的單調性;(Ⅱ)時,若,,求證:.19.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.20.(12分)在中,內角的對邊分別是,已知.(1)求的值;(2)若,求的面積.21.(12分)在直角坐標系中,已知直線的直角坐標方程為,曲線的參數(shù)方程為(為參數(shù)),以直角坐標系原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線和直線的極坐標方程;(2)已知直線與曲線、相交于異于極點的點,若的極徑分別為,求的值.22.(10分)已知函數(shù).(1)當時,求函數(shù)的值域.(2)設函數(shù),若,且的最小值為,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內列不等式,化簡后求得離心率的取值范圍.【詳解】設是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.2.D【解析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.3.A【解析】
確定函數(shù)的奇偶性,排除兩個選項,再求時的函數(shù)值,再排除一個,得正確選項.【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關于軸對稱,排除B,C,當時,,排除D,故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時可通過研究函數(shù)的性質,如奇偶性、單調性、對稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負,以及函數(shù)值的變化趨勢,排除錯誤選項,得正確結論.4.D【解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當目標函數(shù)過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結合求線性目標函數(shù)的最值,屬于基礎題.5.C【解析】
函數(shù)的定義域應滿足故選C.6.D【解析】
可設的內切圓的圓心為,設,,可得,由切線的性質:切線長相等推得,解得、,并設,求得的值,推得為等邊三角形,由焦距為三角形的高,結合離心率公式可得所求值.【詳解】可設的內切圓的圓心為,為切點,且為中點,,設,,則,且有,解得,,設,,設圓切于點,則,,由,解得,,,所以為等邊三角形,所以,,解得.因此,該橢圓的離心率為.故選:D.【點睛】本題考查橢圓的定義和性質,注意運用三角形的內心性質和等邊三角形的性質,切線的性質,考查化簡運算能力,屬于中檔題.7.B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質,即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質:或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).8.D【解析】
設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.9.B【解析】
根據(jù)題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數(shù)列的計算,意在考查學生的計算能力.10.C【解析】
由復數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復數(shù)的除法和模,屬于基礎題.11.A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點:1.函數(shù)的性質;2.分類討論的數(shù)學思想.【思路點睛】本題在在解題過程中抓住偶函數(shù)的性質,避免了由于單調性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調性等問題,通常先在原點一側的區(qū)間(對奇(偶)函數(shù)而言)或某一周期內(對周期函數(shù)而言)考慮,然后推廣到整個定義域上.12.A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.二、填空題:本題共4小題,每小題5分,共20分。13.0.1【解析】
根據(jù)原則,可得,簡單計算,可得結果.【詳解】由題可知:隨機變量,則期望為所以故答案為:【點睛】本題考查正態(tài)分布的計算,掌握正態(tài)曲線的圖形以及計算,屬基礎題.14.【解析】
先由解析式求得(2),再求(2).【詳解】(2),,所以(2),故答案為:【點睛】本題考查對數(shù)、指數(shù)的運算性質,分段函數(shù)求值關鍵是“對號入座”,屬于容易題.15.【解析】
由題意首先研究函數(shù)的性質,然后結合函數(shù)的性質數(shù)形結合得到關于a的不等式,求解不等式即可確定實數(shù)a的取值范圍.【詳解】當時,函數(shù)在區(qū)間上單調遞增,很明顯,且存在唯一的實數(shù)滿足,當時,由對勾函數(shù)的性質可知函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,結合復合函數(shù)的單調性可知函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,且當時,,考查函數(shù)在區(qū)間上的性質,由二次函數(shù)的性質可知函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,函數(shù)有6個零點,即方程有6個根,也就是有6個根,即與有6個不同交點,注意到函數(shù)關于直線對稱,則函數(shù)關于直線對稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實數(shù)的取值范圍是.故答案為.【點睛】本題主要考查分段函數(shù)的應用,復合函數(shù)的單調性,數(shù)形結合的數(shù)學思想,等價轉化的數(shù)學思想等知識,意在考查學生的轉化能力和計算求解能力.16.【解析】
由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由正弦定理將,轉化,即,由余弦定理求得,再由平方關系得再求解.(2)由,得,結合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉化思想,屬于中檔題.18.(1)證明見解析;(2)證明見解析.【解析】
(1)首先對函數(shù)求導,再根據(jù)參數(shù)的取值,討論的正負,即可求出關于的單調性即可;(2)首先通過構造新函數(shù),討論新函數(shù)的單調性,根據(jù)新函數(shù)的單調性證明.【詳解】(1),令,則,令得,當時,則在單調遞減,當時,則在單調遞增,所以,當時,,即,則在上單調遞增,當時,,易知當時,,當時,,由零點存在性定理知,,不妨設,使得,當時,,即,當時,,即,當時,,即,所以在和上單調遞增,在單調遞減;(2)證明:構造函數(shù),,,,整理得,,(當時等號成立),所以在上單調遞增,則,所以在上單調遞增,,這里不妨設,欲證,即證由(1)知時,在上單調遞增,則需證,由已知有,只需證,即證,由在上單調遞增,且時,有,故成立,從而得證.【點睛】本題主要考查了導數(shù)含參分類討論單調性,借助構造函數(shù)和單調性證明不等式,屬于難題.19.(1);(2).【解析】
(1)根據(jù)坐標和為等邊三角形可得,進而得到橢圓方程;(2)①當直線斜率不存在時,易求坐標,從而得到所求面積;②當直線的斜率存在時,設方程為,與橢圓方程聯(lián)立得到韋達定理的形式,并確定的取值范圍;利用,代入韋達定理的結論可求得關于的表達式,采用換元法將問題轉化為,的值域的求解問題,結合函數(shù)單調性可求得值域;結合兩種情況的結論可得最終結果.【詳解】(1),,為等邊三角形,,橢圓的標準方程為.(2)設四邊形的面積為.①當直線的斜率不存在時,可得,,.②當直線的斜率存在時,設直線的方程為,設,,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內單調遞減,.綜上所述:四邊形面積的取值范圍是.【點睛】本題考查直線與橢圓的綜合應用問題,涉及到橢圓方程的求解、橢圓中的四邊形面積的取值范圍的求解問題;關鍵是能夠將所求面積表示為關于某一變量的函數(shù),將問題轉化為函數(shù)值域的求解問題.20.(1);(2).【解析】
(1)由,利用余弦定理可得,結合可得結果;(2)由正弦定理,,利用三角形內角和定理可得,由三角形面積公式可得結果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 原材料及中間產品管理方案
- 二零二五年香港活牛養(yǎng)殖、屠宰、運輸全流程服務合同3篇
- 房屋建筑學試題庫(含答案)匯編
- 二零二五版XX污水處理廠污泥處理與資源化利用合同3篇
- 阻礙執(zhí)行力的三大原因幻燈片資料
- 2024年海南衛(wèi)生健康職業(yè)學院高職單招語文歷年參考題庫含答案解析
- 2024年浙江金融職業(yè)學院高職單招語文歷年參考題庫含答案解析
- 臺球室項目投資協(xié)議書
- 2024年濟源職業(yè)技術學院高職單招語文歷年參考題庫含答案解析
- 2024年陽曲縣中醫(yī)醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 妊娠合并貧血護理
- 完整解讀《義務教育課程方案(2022版)》PPT2022年新版義務教育課程實施方案最新發(fā)布義務教育課程方案(2022版)精品課件
- 6.ctg-mboss crm2.0渠道服務總線功能技術_v0.99
- 流動資金自動測算表(內自帶計算公式)
- 工地施工臨時用水的計算
- t-橋式起重機設計計算書
- 暴雨產流計算(推理公式河南省)
- 品質管控流程(PPT32頁)
- 人教版小學數(shù)學六年級上冊:第八單元總復習教案(共10頁)
- 田字格硬筆書法練字專用A4打印版紅藍兩色
- 鐵路站房及配套工程裝飾裝修施工作業(yè)指導書
評論
0/150
提交評論