版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
導(dǎo)數(shù)的預(yù)備知識
——極限與平均變化率教學(xué)目標(biāo)
了解函數(shù)的極限和平均變化率教學(xué)重點(diǎn):函數(shù)的平均變化率無論x+或x-
一、函數(shù)的極限
一、函數(shù)的極限x110100100010000100000···y10.10.010.0010.00010.00001···考察函數(shù)當(dāng)x無限增大時的變化趨勢.yxO當(dāng)自變量x取正值并無限增大時,函數(shù)的值無限趨近于0,即|y-0|可以變得任意?。?dāng)x趨向于正無窮大時,函數(shù)的極限是0,記作函數(shù)的極限yxO當(dāng)x趨向于負(fù)無窮大時,函數(shù)的極限是0,記作函數(shù)的極限就說當(dāng)x趨向于正無窮大時,函數(shù)的極限是a,記作一般地,當(dāng)自變量x取正值并且無限增大時,如果函數(shù)無限趨近于一個常數(shù)a,也可記作:當(dāng)當(dāng)就說當(dāng)x趨向于負(fù)無窮大時,函數(shù)的極限是a,記作當(dāng)自變量x取負(fù)值并且絕對值無限增大時,如果函數(shù)無限趨近于一個常數(shù)a,也可記作:函數(shù)的極限如果那就是說當(dāng)x趨向于也可記作:當(dāng)無窮大時,函數(shù)的極限是a,記作對于常數(shù)函數(shù)也有函數(shù)的極限x取正值并且無限增大無限趨近于常數(shù)a
極限表示
值的變化趨勢
自變量x的變化趨勢
x取負(fù)值并且絕對值無限增大無限趨近于常數(shù)a
x取正值并且無限增大,x取負(fù)值并且絕對值無限增大無限趨近于常數(shù)a
函數(shù)的極限例1、分別就自變量x趨向于的情況,討論下列函數(shù)的變化趨勢:(1)解:當(dāng)時,無限趨近于0,即當(dāng)時,趨近于函數(shù)的極限(2)解:當(dāng)時,的值保持為1.即當(dāng)時,的值保持為-1,即研究某個變量相對于另一個變量變化導(dǎo)數(shù)研究的問題的快慢程度.變化率問題
二、
平均變化率變化率問題問題1氣球膨脹率
我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?氣球的體積V(單位:L)與半徑r(單位:dm)之間的函數(shù)關(guān)系是如果將半徑r表示為體積V的函數(shù),那么
二、
平均變化率我們來分
析一下:當(dāng)V從0增加到1時,氣球半徑增加了氣球的平均膨脹率為當(dāng)V從1增加到2時,氣球半徑增加了氣球的平均膨脹率為顯然0.62>0.16問題1氣球膨脹率我們都吹過氣球回憶一下吹氣球的過程,可以發(fā)現(xiàn),隨著氣球內(nèi)空氣容量的增加,氣球的半徑增加越來越慢.從數(shù)學(xué)角度,如何描述這種現(xiàn)象呢?思考?當(dāng)空氣容量從V1增加到V2時,氣球的平均膨脹率是多少?
二、
平均變化率問題2高臺跳水在高臺跳水運(yùn)動中,運(yùn)動員相對于水面的高度h(單位:米)與起跳后的時間t(單位:秒)存在函數(shù)關(guān)系h(t)=-4.9t2+6.5t+10.
如何用運(yùn)動員在某些時間段內(nèi)的平均速度粗略地描述其運(yùn)動狀態(tài)?請計(jì)算hto請計(jì)算htoh(t)=-4.9t2+6.5t+10平均變化率定義:若設(shè)Δx=x2-x1,Δf=f(x2)-f(x1)
則平均變化率為這里Δx看作是對于x1的一個“增量”可用x1+Δx代替x2同樣Δf=Δy==f(x2)-f(x1)上述問題中的變化率可用式子表示稱為函數(shù)f(x)從x1到x2的平均變化率思考?觀察函數(shù)f(x)的圖象平均變化率表示什么?OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y直線AB的斜率PQoxyy=f(x)割線切線T三、平均變化率的極限的幾何意義:
我們發(fā)現(xiàn),當(dāng)點(diǎn)Q沿著曲線無限接近點(diǎn)P即Δx→0時,割線PQ如果有一個極限位置PT.則我們把直線PT稱為曲線在點(diǎn)P處的切線.設(shè)切線的傾斜角為α,那么當(dāng)Δx→0時,割線PQ的斜率,稱為曲線在點(diǎn)P處的切線的斜率.即:這個概念:①提供了求曲線上某點(diǎn)切線的斜率的一種方法;②切線斜率的本質(zhì)——函數(shù)在x=x0處的導(dǎo)數(shù).要注意,曲線在某點(diǎn)處的切線:1)與該點(diǎn)的位置有關(guān);要根據(jù)割線是否有極限位置來判斷與求解.如有極限,則在此點(diǎn)有切線,且切線是唯一的;如不存在,則在此點(diǎn)處無切線;3)曲線的切線,并不一定與曲線只有一個交點(diǎn),可以有多個,甚至可以無窮多個.PQoxyy=f(x)割線切線T練習(xí):2.物體按照s(t)=3t2+t+4的規(guī)律作直線運(yùn)動,求在4s附近的平均變化率.A3:求曲線y=f(x)=x2+1在點(diǎn)P(1,2)處的切線方程.QPy=x2+1xy-111OjMDyDx因此,切線方程為y-2=2(x-1),即y=2x.求曲線在某點(diǎn)處的切線方程的基本步驟:①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《人力資源使用》課件
- 養(yǎng)老院老人入住確認(rèn)制度
- 養(yǎng)老院環(huán)境衛(wèi)生與消毒制度
- 《理想的風(fēng)箏課堂》課件
- 2024年民政部社會福利中心“養(yǎng)老服務(wù)人才培訓(xùn)”擬申報課件信息反饋表
- 2024年新型環(huán)保材料研發(fā)項(xiàng)目投標(biāo)邀請函模板3篇
- 敬老院老人不愿入住協(xié)議書(2篇)
- 《青蒿素類抗瘧藥》課件
- 《豐子愷白鵝》課件
- 2025年遵義c1貨運(yùn)上崗證模擬考試
- 足球場天然草坪養(yǎng)護(hù)方案
- 六年級上冊心理健康課件6《健康上網(wǎng)快樂多》(27張PPT)
- 船舶管理(航海二三副)理論考試題庫(含答案)
- 吉林省長春市朝陽區(qū)2022-2023學(xué)年七年級下學(xué)期期末地理試題(含答案)
- 國開電大本科《人文英語4》機(jī)考真題(第十六套)
- 2023年云南省昆明滇中新區(qū)公開招聘20人(共500題含答案解析)筆試歷年難、易錯考點(diǎn)試題含答案附詳解
- 皮膚裂傷的護(hù)理課件
- 高中生公益活動典型事例十三篇
- 改進(jìn)維持性血液透析患者貧血狀況PDCA
- 車輛出入庫管理plc設(shè)計(jì)
- 導(dǎo)地線弧垂測量記錄表
評論
0/150
提交評論