江蘇省興化市安豐2023年中考猜題數(shù)學試卷含解析及點睛_第1頁
江蘇省興化市安豐2023年中考猜題數(shù)學試卷含解析及點睛_第2頁
江蘇省興化市安豐2023年中考猜題數(shù)學試卷含解析及點睛_第3頁
江蘇省興化市安豐2023年中考猜題數(shù)學試卷含解析及點睛_第4頁
江蘇省興化市安豐2023年中考猜題數(shù)學試卷含解析及點睛_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果向北走6km記作+6km,那么向南走8km記作()A.+8kmB.﹣8kmC.+14kmD.﹣2km2.若一個多邊形的內角和為360°,則這個多邊形的邊數(shù)是(

)A.3

B.4

C.5

D.63.下列計算正確的是(

).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=24.下列現(xiàn)象,能說明“線動成面”的是()A.天空劃過一道流星B.汽車雨刷在擋風玻璃上刷出的痕跡C.拋出一塊小石子,石子在空中飛行的路線D.旋轉一扇門,門在空中運動的痕跡5.為了解某社區(qū)居民的用電情況,隨機對該社區(qū)10戶居民進行調查,下表是這10戶居民2015年4月份用電量的調查結果:居民(戶)1234月用電量(度/戶)30425051那么關于這10戶居民月用電量(單位:度),下列說法錯誤的是()A.中位數(shù)是50 B.眾數(shù)是51 C.方差是42 D.極差是216.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=87.方程x2﹣4x+5=0根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根8.在如圖所示的計算程序中,y與x之間的函數(shù)關系所對應的圖象應為()A. B. C. D.9.若A(﹣4,y1),B(﹣3,y2),C(1,y3)為二次函數(shù)y=x2﹣4x+m的圖象上的三點,則y1,y2,y3的大小關系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y210.下面調查方式中,合適的是()A.調查你所在班級同學的體重,采用抽樣調查方式B.調查烏金塘水庫的水質情況,采用抽樣調査的方式C.調查《CBA聯(lián)賽》欄目在我市的收視率,采用普查的方式D.要了解全市初中學生的業(yè)余愛好,采用普查的方式11.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.1412.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發(fā),沿B-C-D的路線向點D運動.設△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數(shù)關系的圖像大致為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果將拋物線平移,使平移后的拋物線頂點坐標為,那么所得新拋物線的表達式是__________.14.不等式組的解集為_____.15.已知⊙O的半徑為5,由直徑AB的端點B作⊙O的切線,從圓周上一點P引該切線的垂線PM,M為垂足,連接PA,設PA=x,則AP+2PM的函數(shù)表達式為______,此函數(shù)的最大值是____,最小值是______.16.在平面直角坐標系中,點P到軸的距離為1,到軸的距離為2.寫出一個符合條件的點P的坐標________________.17.計算:=_____.18.觀察以下一列數(shù):3,,,,,…則第20個數(shù)是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=1.求拋物線的函數(shù)表達式.當t為何值時,矩形ABCD的周長有最大值?最大值是多少?保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.20.(6分)某學校后勤人員到一家文具店給九年級的同學購買考試用文具包,文具店規(guī)定一次購買400個以上,可享受8折優(yōu)惠.若給九年級學生每人購買一個,不能享受8折優(yōu)惠,需付款1936元;若多買88個,就可享受8折優(yōu)惠,同樣只需付款1936元.請問該學校九年級學生有多少人?21.(6分)如圖1,在圓中,垂直于弦,為垂足,作,與的延長線交于.(1)求證:是圓的切線;(2)如圖2,延長,交圓于點,點是劣弧的中點,,,求的長.22.(8分)某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據(jù)調查統(tǒng)計結果,繪制了不完整的統(tǒng)計圖.請結合統(tǒng)計圖,回答下列問題:(1)本次調查學生共人,a=,并將條形圖補充完整;(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?(3)學校讓每班在A、B、C、D四種活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.23.(8分)如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.求證:DE=AB;以D為圓心,DE為半徑作圓弧交AD于點G,若BF=FC=1,試求EG的長.24.(10分)“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:請結合圖表完成下列各題:(1)①表中a的值為,中位數(shù)在第組;②頻數(shù)分布直方圖補充完整;(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?(3)第5組10名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.組別成績x分頻數(shù)(人數(shù))第1組50≤x<606第2組60≤x<708第3組70≤x<8014第4組80≤x<90a第5組90≤x<1001025.(10分)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的解析式;求△OAB的面積.26.(12分)如圖,直線與雙曲線相交于、兩點.(1),點坐標為.(2)在軸上找一點,在軸上找一點,使的值最小,求出點兩點坐標27.(12分)某校組織學生去9km外的郊區(qū)游玩,一部分學生騎自行車先走,半小時后,其他學生乘公共汽車出發(fā),結果他們同時到達.己知公共汽車的速度是自行車速度的3倍,求自行車的速度和公共汽車的速度分別是多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

正負數(shù)的應用,先判斷向北、向南是不是具有相反意義的量,再用正負數(shù)表示出來【詳解】解:向北和向南互為相反意義的量.若向北走6km記作+6km,那么向南走8km記作﹣8km.故選:B.【點睛】本題考查正負數(shù)在生活中的應用.注意用正負數(shù)表示的量必須是具有相反意義的量.2、B【解析】

利用多邊形的內角和公式求出n即可.【詳解】由題意得:(n-2)×180°=360°,解得n=4;故答案為:B.【點睛】本題考查多邊形的內角和,解題關鍵在于熟練掌握公式.3、D【解析】分析:根據(jù)完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數(shù)冪的除法以及算術平方根的計算,掌握完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術平方根的定義是解題的關鍵.4、B【解析】

本題是一道關于點、線、面、體的題目,回憶點、線、面、體的知識;【詳解】解:∵A、天空劃過一道流星說明“點動成線”,∴故本選項錯誤.∵B、汽車雨刷在擋風玻璃上刷出的痕跡說明“線動成面”,∴故本選項正確.∵C、拋出一塊小石子,石子在空中飛行的路線說明“點動成線”,∴故本選項錯誤.∵D、旋轉一扇門,門在空中運動的痕跡說明“面動成體”,∴故本選項錯誤.故選B.【點睛】本題考查了點、線、面、體,準確認識生活實際中的現(xiàn)象是解題的關鍵.點動成線、線動成面、面動成體.5、C【解析】試題解析:10戶居民2015年4月份用電量為30,42,42,50,50,50,51,51,51,51,平均數(shù)為(30+42+42+50+50+50+51+51+51+51)=46.8,中位數(shù)為50;眾數(shù)為51,極差為51-30=21,方差為[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故選C.考點:1.方差;2.中位數(shù);3.眾數(shù);4.極差.6、D【解析】

根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;

故選D.【點睛】本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.7、D【解析】

解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程沒有實數(shù)根.8、D【解析】

先求出一次函數(shù)的關系式,再根據(jù)函數(shù)圖象與坐標軸的交點及函數(shù)圖象的性質解答即可.【詳解】由題意知,函數(shù)關系為一次函數(shù)y=-1x+4,由k=-1<0可知,y隨x的增大而減小,且當x=0時,y=4,當y=0時,x=1.故選D.【點睛】本題考查學生對計算程序及函數(shù)性質的理解.根據(jù)計算程序可知此計算程序所反映的函數(shù)關系為一次函數(shù)y=-1x+4,然后根據(jù)一次函數(shù)的圖象的性質求解.9、B【解析】

根據(jù)函數(shù)解析式的特點,其對稱軸為x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在對稱軸左側,圖象開口向上,利用y隨x的增大而減小,可判斷y3<y2<y1.【詳解】拋物線y=x2﹣4x+m的對稱軸為x=2,當x<2時,y隨著x的增大而減小,因為-4<-3<1<2,所以y3<y2<y1,故選B.【點睛】本題考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的增減性是解題的關鍵.10、B【解析】

由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.【詳解】A、調查你所在班級同學的體重,采用普查,故A不符合題意;B、調查烏金塘水庫的水質情況,無法普查,采用抽樣調査的方式,故B符合題意;C、調查《CBA聯(lián)賽》欄目在我市的收視率,調查范圍廣適合抽樣調查,故C不符合題意;D、要了解全市初中學生的業(yè)余愛好,調查范圍廣適合抽樣調查,故D不符合題意;故選B.【點睛】本題考查了抽樣調查和全面調查的區(qū)別,選擇普查還是抽樣調查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.11、C【解析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點睛】本題考查切線長定理,解題的關鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.12、C【解析】

先分別求出點P從點B出發(fā),沿B→C→D向終點D勻速運動時,當0<x≤2和2<x≤4時,y與x之間的函數(shù)關系式,即可得出函數(shù)的圖象.【詳解】由題意知,點P從點B出發(fā),沿B→C→D向終點D勻速運動,則

當0<x≤2,y=x,

當2<x≤4,y=1,

由以上分析可知,這個分段函數(shù)的圖象是C.

故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】

平移不改變拋物線的開口方向與開口大小,即解析式的二次項系數(shù)不變,根據(jù)拋物線的頂點式可求拋物線解析式.【詳解】∵原拋物線解析式為y=1x1,頂點坐標是(0,0),平移后拋物線頂點坐標為(1,1),∴平移后的拋物線的表達式為:y=1(x﹣1)1+1.故答案為:y=1(x﹣1)1+1.【點睛】本題考查了拋物線的平移與解析式變化的關系.關鍵是明確拋物線的平移實質上是頂點的平移,能用頂點式表示平移后的拋物線解析式.14、﹣2≤x<【解析】

根據(jù)解不等式的步驟從而得到答案.【詳解】,解不等式①可得:x≥-2,解不等式②可得:x<,故答案為-2≤x<.【點睛】本題主要考查了解不等式,解本題的要點在于分別求解①,②不等式,從而得到答案.15、x2+x+20(0<x<10)不存在.【解析】

先連接BP,AB是直徑,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求從而有(0<x<10),再根據(jù)二次函數(shù)的性質,可求函數(shù)的最大值.【詳解】如圖所示,連接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,沒有最小值,∴y最大值=故答案為(0<x<10),,不存在.【點睛】考查相似三角形的判定與性質,二次函數(shù)的最值等,綜合性比較強,需要熟練掌握.16、(寫出一個即可)【解析】【分析】根據(jù)點到x軸的距離即點的縱坐標的絕對值,點到y(tǒng)軸的距離即點的橫坐標的絕對值,進行求解即可.【詳解】設P(x,y),根據(jù)題意,得|x|=2,|y|=1,即x=±2,y=±1,則點P的坐標有(2,1),(2,-1),(-2,1),(2,-1),故答案為:(2,1),(2,-1),(-2,1),(2,-1)(寫出一個即可).【點睛】本題考查了點的坐標和點到坐標軸的距離之間的關系.熟知點到x軸的距離即點的縱坐標的絕對值,點到y(tǒng)軸的距離即點的橫坐標的絕對值是解題的關鍵.17、-【解析】

根據(jù)二次根式的運算法則即可求出答案.【詳解】原式=2.故答案為-.【點睛】本題考查二次根式的運算法則,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.18、【解析】

觀察已知數(shù)列得到一般性規(guī)律,寫出第20個數(shù)即可.【詳解】解:觀察數(shù)列得:第n個數(shù)為,則第20個數(shù)是.故答案為.【點睛】本題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解答本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)當t=1時,矩形ABCD的周長有最大值,最大值為;(3)拋物線向右平移的距離是1個單位.【解析】

(1)由點E的坐標設拋物線的交點式,再把點D的坐標(2,1)代入計算可得;

(2)由拋物線的對稱性得BE=OA=t,據(jù)此知AB=10-2t,再由x=t時AD=,根據(jù)矩形的周長公式列出函數(shù)解析式,配方成頂點式即可得;

(3)由t=2得出點A、B、C、D及對角線交點P的坐標,由直線GH平分矩形的面積知直線GH必過點P,根據(jù)AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點Q平移后的對應點是P知PQ是△OBD中位線,據(jù)此可得.【詳解】(1)設拋物線解析式為,當時,,點的坐標為,將點坐標代入解析式得,解得:,拋物線的函數(shù)表達式為;(2)由拋物線的對稱性得,,當時,,矩形的周長,,,,當時,矩形的周長有最大值,最大值為;(3)如圖,當時,點、、、的坐標分別為、、、,矩形對角線的交點的坐標為,直線平分矩形的面積,點是和的中點,,由平移知,是的中位線,,所以拋物線向右平移的距離是1個單位.【點睛】本題主要考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質及平移變換的性質等知識點.20、1人【解析】解:設九年級學生有x人,根據(jù)題意,列方程得:,整理得0.8(x+88)=x,解之得x=1.經(jīng)檢驗x=1是原方程的解.答:這個學校九年級學生有1人.設九年級學生有x人,根據(jù)“給九年級學生每人購買一個,不能享受8折優(yōu)惠,需付款1936元”可得每個文具包的花費是:元,根據(jù)“若多買88個,就可享受8折優(yōu)惠,同樣只需付款1936元”可得每個文具包的花費是:,根據(jù)題意可得方程,解方程即可.21、(1)詳見解析;(2)【解析】

(1)連接OA,利用切線的判定證明即可;

(2)分別連結OP、PE、AE,OP交AE于F點,根據(jù)勾股定理解答即可.【詳解】解:(1)如圖,連結OA,

∵OA=OB,OC⊥AB,

∴∠AOC=∠BOC,

又∠BAD=∠BOC,

∴∠BAD=∠AOC

∵∠AOC+∠OAC=90°,

∴∠BAD+∠OAC=90°,

∴OA⊥AD,

即:直線AD是⊙O的切線;

(2)分別連結OP、PE、AE,OP交AE于F點,

∵BE是直徑,

∴∠EAB=90°,

∴OC∥AE,

∵OB=,

∴BE=13

∵AB=5,在直角△ABE中,AE=12,EF=6,F(xiàn)P=OP-OF=-=4

在直角△PEF中,F(xiàn)P=4,EF=6,PE2=16+36=52,

在直角△PEB中,BE=13,PB2=BE2-PE2,

PB==3.【點睛】本題考查了切線的判定,勾股定理,正確的作出輔助線是解題的關鍵.22、(1)300,10;(2)有800人;(3).【解析】試題分析:試題解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,圖形如下:(2)2000×40%=800(人),答:估計該校選擇“跑步”這種活動的學生約有800人;(3)畫樹狀圖為:共有12種等可能的結果數(shù),其中每班所抽到的兩項方式恰好是“跑步”和“跳繩”的結果數(shù)為2,所以每班所抽到的兩項方式恰好是“跑步”和“跳繩”的概率=.考點:1.用樣本估計總體;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;4.列表法與樹狀圖法.23、(1)詳見解析;(2)36【解析】∵四邊形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中∠AED=∠B=90∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=3,∴EG的長=30×π×3180=24、(1)①12,3.②詳見解析.(2).【解析】分析:(1)①根據(jù)題意和表中的數(shù)據(jù)可以求得a的值;②由表格中的數(shù)據(jù)可以將頻數(shù)分布表補充完整;(2)根據(jù)表格中的數(shù)據(jù)和測試成績不低于80分為優(yōu)秀,可以求得優(yōu)秀率;(3)根據(jù)題意可以求得所有的可能性,從而可以得到小明與小強兩名男同學能分在同一組的概率.詳解:(1)①a=50﹣(6+8+14+10)=12,中位數(shù)為第25、26個數(shù)的平均數(shù),而第25、26個數(shù)均落在第3組內,所以中位數(shù)落在第3組,故答案為12,3;②如圖,(2)×100%=44%,答:本次測試的優(yōu)秀率是44%;(3)設小明和小強分別為A、B,另外兩名學生為:C、D,則所有的可能性為:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小強分在一起的概率為:.點睛:本題考查列舉法求概率、頻數(shù)分布表、頻數(shù)分布直方圖、中位數(shù),解題的關鍵是明確題意,找出所求問題需要的條件,可以將所有的可能性都寫出來,求出相應的概率.25、(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=﹣x+1.(2)2.【解析】

(1)根據(jù)反比例函數(shù)y2=的圖象過點A(2,3),利用待定系數(shù)法求出m,進而得出B點坐標,然后利用待定系數(shù)法求出一次函數(shù)解析式;(2)設直線y1=kx+b與x軸交于C,求出C點坐標,根據(jù)S△AOB=S△AOC﹣S△BOC,列式計算即可.【詳解】(1)∵反比例函數(shù)y2=的圖象過A(2,3),B(6,n)兩點,∴m=2×3=6n,∴m=6,n=1,∴反比例函數(shù)的解析式為y=,B的坐標是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=﹣x+1.(2)如圖,設直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)解析式以及求三角形面積等知識,根據(jù)已知得出B點坐標以及得出S△AOB=S△AOC﹣S△BOC是解題的關鍵.26、(1),;(1),.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論