江蘇省鹽城市大豐區(qū)第一共同體2023年中考數(shù)學(xué)猜題卷含解析及點睛_第1頁
江蘇省鹽城市大豐區(qū)第一共同體2023年中考數(shù)學(xué)猜題卷含解析及點睛_第2頁
江蘇省鹽城市大豐區(qū)第一共同體2023年中考數(shù)學(xué)猜題卷含解析及點睛_第3頁
江蘇省鹽城市大豐區(qū)第一共同體2023年中考數(shù)學(xué)猜題卷含解析及點睛_第4頁
江蘇省鹽城市大豐區(qū)第一共同體2023年中考數(shù)學(xué)猜題卷含解析及點睛_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.點A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<42.3的倒數(shù)是()A. B. C. D.3.在平面直角坐標系中,將點P(﹣4,2)繞原點O順時針旋轉(zhuǎn)90°,則其對應(yīng)點Q的坐標為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)4.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.165.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(

)A.15

B.12

C.9

D.66.如圖是由四個相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.7.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.8.下列說法:①-102②數(shù)軸上的點與實數(shù)成一一對應(yīng)關(guān)系;③﹣2是16的平方根;④任何實數(shù)不是有理數(shù)就是無理數(shù);⑤兩個無理數(shù)的和還是無理數(shù);⑥無理數(shù)都是無限小數(shù),其中正確的個數(shù)有()A.2個 B.3個 C.4個 D.5個9.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對人體健康和大氣環(huán)境質(zhì)量有很大危害.2.5μm用科學(xué)記數(shù)法可表示為()A. B. C. D.10.如圖,△ABC中,AB=AC=15,AD平分∠BAC,點E為AC的中點,連接DE,若△CDE的周長為21,則BC的長為()A.16 B.14 C.12 D.6二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.12.某學(xué)校要購買電腦,A型電腦每臺5000元,B型電腦每臺3000元,購買10臺電腦共花費34000元設(shè)購買A型電腦x臺,購買B型電腦y臺,則根據(jù)題意可列方程組為______.13.要使式子有意義,則的取值范圍是__________.14.在如圖所示(A,B,C三個區(qū)域)的圖形中隨機地撒一把豆子,豆子落在區(qū)域的可能性最大(填A(yù)或B或C).15.某風(fēng)扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學(xué)記數(shù)法表示為_____.16.一等腰三角形,底邊長是18厘米,底邊上的高是18厘米,現(xiàn)在沿底邊依次從下往上畫寬度均為3厘米的矩形,畫出的矩形是正方形時停止,則這個矩形是第_____個.17.如圖所示,在等腰△ABC中,AB=AC,∠A=36°,將△ABC中的∠A沿DE向下翻折,使點A落在點C處.若AE=,則BC的長是_____.三、解答題(共7小題,滿分69分)18.(10分)某區(qū)對即將參加中考的5000名初中畢業(yè)生進行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請根據(jù)圖表信息回答下列問題:視力頻數(shù)(人)頻率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次調(diào)查的樣本為,樣本容量為;在頻數(shù)分布表中,a=,b=,并將頻數(shù)分布直方圖補充完整;若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?19.(5分)如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點O、B、C、A、P在同一平面內(nèi),求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)20.(8分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點,P是邊AC上一動點,BP與CD相交于點E.(1)如果BC=6,AC=8,且P為AC的中點,求線段BE的長;(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.21.(10分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結(jié)果保留一位小數(shù).)22.(10分)如圖,兩座建筑物的水平距離BC為40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結(jié)果保留小數(shù)點后一位).參考數(shù)據(jù)sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.23.(12分)如圖,點C、E、B、F在同一直線上,AC∥DF,AC=DF,BC=EF,求證:AB=DE24.(14分)如圖,中,,于,,為邊上一點.(1)當時,直接寫出,.(2)如圖1,當,時,連并延長交延長線于,求證:.(3)如圖2,連交于,當且時,求的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)第四象限內(nèi)點的橫坐標是正數(shù),縱坐標是負數(shù)列出不等式組,然后求解即可.【詳解】解:∵點A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式組的解集是m>1,

即m的取值范圍是m>1.

故選B.【點睛】本題考查各象限內(nèi)點的坐標的符號特征以及解不等式,記住各象限內(nèi)點的坐標的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).3、A【解析】

首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進而求出Q點坐標.【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標為(﹣4,2),∴Q點坐標為(2,4),故選A.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),以及全等三角形的判定和性質(zhì),關(guān)鍵是掌握旋轉(zhuǎn)后對應(yīng)線段相等.4、B【解析】

根據(jù)矩形和折疊性質(zhì)可得△EHC≌△FBC,從而可得BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據(jù)折疊的性質(zhì),有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點睛】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角形全等的判定與性質(zhì)、勾股定理等,綜合性較強,熟練掌握各相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.5、A【解析】

根據(jù)三角函數(shù)的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A6、A【解析】【分析】根據(jù)正視圖是從物體的正面看得到的圖形即可得.【詳解】從正面看可得從左往右2列正方形的個數(shù)依次為2,1,如圖所示:故選A.【點睛】本題考查了三視圖的知識,正視圖是從物體的正面看得到的視圖.7、B【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形8、C【解析】

根據(jù)平方根,數(shù)軸,有理數(shù)的分類逐一分析即可.【詳解】①∵-102=10,∴②數(shù)軸上的點與實數(shù)成一一對應(yīng)關(guān)系,故說法正確;③∵16=4,故-2是16的平方根,故說法正確;④任何實數(shù)不是有理數(shù)就是無理數(shù),故說法正確;⑤兩個無理數(shù)的和還是無理數(shù),如2和-2⑥無理數(shù)都是無限小數(shù),故說法正確;故正確的是②③④⑥共4個;故選C.【點睛】本題考查了有理數(shù)的分類,數(shù)軸及平方根的概念,有理數(shù)都可以化為小數(shù),其中整數(shù)可以看作小數(shù)點后面是零的小數(shù),分數(shù)可以化為有限小數(shù)或無限循環(huán)小數(shù);無理數(shù)是無限不循環(huán)小數(shù),其中有開方開不盡的數(shù),如2,9、C【解析】試題分析:大于0而小于1的數(shù)用科學(xué)計數(shù)法表示,10的指數(shù)是負整數(shù),其絕對值等于第一個不是0的數(shù)字前所有0的個數(shù).考點:用科學(xué)計數(shù)法計數(shù)10、C【解析】

先根據(jù)等腰三角形三線合一知D為BC中點,由點E為AC的中點知DE為△ABC中位線,故△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.【詳解】∵AB=AC=15,AD平分∠BAC,∴D為BC中點,∵點E為AC的中點,∴DE為△ABC中位線,∴DE=AB,∴△ABC的周長是△CDE的周長的兩倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故選C.【點睛】此題主要考查三角形的中位線定理,解題的關(guān)鍵是熟知等腰三角形的三線合一定理.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.12、【解析】試題解析:根據(jù)題意得:故答案為13、【解析】

根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件可得關(guān)于x的不等式,解不等式即可得.【詳解】由題意得:2-x≥0,解得:x≤2,故答案為x≤2.14、A【解析】試題分析:由題意得:SA>SB>SC,故落在A區(qū)域的可能性大考點:幾何概率15、1.57×1【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1570000用科學(xué)記數(shù)法表示為1.57×1.故答案為1.57×1.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.16、5【解析】

根據(jù)相似三角形的相似比求得頂點到這個正方形的長,再根據(jù)矩形的寬求得是第幾張.【詳解】解:已知剪得的紙條中有一張是正方形,則正方形中平行于底邊的邊是3,所以根據(jù)相似三角形的性質(zhì)可設(shè)從頂點到這個正方形的線段為x,則318=x所以另一段長為18-3=15,因為15÷3=5,所以是第5張.故答案為:5.【點睛】本題主要考查了相相似三角形的判定和性質(zhì),關(guān)鍵是根據(jù)似三角形的性質(zhì)及等腰三角形的性質(zhì)的綜合運用解答.17、【解析】【分析】由折疊的性質(zhì)可知AE=CE,再證明△BCE是等腰三角形即可得到BC=CE,問題得解.【詳解】∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵將△ABC中的∠A沿DE向下翻折,使點A落在點C處,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案為.【點睛】本題考查了等腰三角形的判斷和性質(zhì)、折疊的性質(zhì)以及三角形內(nèi)角和定理的運用,證明△BCE是等腰三角形是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、200名初中畢業(yè)生的視力情況200600.05【解析】

(1)根據(jù)視力在4.0≤x<4.3范圍內(nèi)的頻數(shù)除以頻率即可求得樣本容量;(2)根據(jù)樣本容量,根據(jù)其對應(yīng)的已知頻率或頻數(shù)即可求得a,b的值;(3)求出樣本中視力正常所占百分比乘以5000即可得解.【詳解】(1)根據(jù)題意得:20÷0.1=200,即本次調(diào)查的樣本容量為200,故答案為200;(2)a=200×0.3=60,b=10÷200=0.05,補全頻數(shù)分布圖,如圖所示,故答案為60,0.05;(3)根據(jù)題意得:5000×=3500(人),則全區(qū)初中畢業(yè)生中視力正常的學(xué)生有估計有3500人.19、【解析】

過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD?tan26.6°;解Rt△CBD,得出CD=PD?tan37°;再根據(jù)CD﹣BD=BC,列出方程,求出PD=2,進而求出PE=4,AE=5,然后在△APE中利用三角函數(shù)的定義即可求解.【詳解】解:如圖,過點P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD?tan∠BPD=PD?tan26.6°.在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD?tan∠CPD=PD?tan37°.∵CD﹣BD=BC,∴PD?tan37°﹣PD?tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD?tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴.20、(1)(2)(3).【解析】

(1)由勾股定理求出BP的長,D是邊AB的中點,P為AC的中點,所以點E是△ABC的重心,然后求得BE的長.(2)過點B作BF∥CA交CD的延長線于點F,所以,然后可求得EF=8,所以,所以,因為PD⊥AB,D是邊AB的中點,在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=,∵D是邊AB的中點,P為AC的中點,∴點E是△ABC的重心,∴,(2)過點B作BF∥CA交CD的延長線于點F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,則CD=5,∴EF=8,∴,∴,∴,設(shè)CP=k,則PA=3k,∵PD⊥AB,D是邊AB的中點,∴PA=PB=3k,∴,∴,∵,∴,(3)∵∠ACB=90°,D是邊AB的中點,∴,∵,∴,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,△DPE∽△DCP,∴,∵DE=3,DC=5,∴.【點睛】本題是一道三角形的綜合性題目,熟練掌握三角形的重心,三角形相似的判定和性質(zhì)以及三角函數(shù)是解題的關(guān)鍵.21、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關(guān)于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.22、建筑物AB的高度約為30.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論