陜西省西安高新第二初級2023年中考聯考數學試題含解析及點睛_第1頁
陜西省西安高新第二初級2023年中考聯考數學試題含解析及點睛_第2頁
陜西省西安高新第二初級2023年中考聯考數學試題含解析及點睛_第3頁
陜西省西安高新第二初級2023年中考聯考數學試題含解析及點睛_第4頁
陜西省西安高新第二初級2023年中考聯考數學試題含解析及點睛_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.某市2017年實現生產總值達280億的目標,用科學記數法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10102.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.3.下列運算正確的是()A.a?a2=a2 B.(ab)2=ab C.3﹣1= D.4.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米5.已知二次函數y=﹣(x﹣h)2+1(為常數),在自變量x的值滿足1≤x≤3的情況下,與其對應的函數值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+6.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數為()A.80° B.70° C.60° D.50°7.已知地球上海洋面積約為361000000km2,361000000這個數用科學記數法可表示為()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1098.如圖,△ABC的面積為12,AC=3,現將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.109.計算:的結果是()A. B.. C. D.10.已知點A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函數y=的圖象上,則y1、y2、y3的大小關系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,點O為坐標原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標為(6,0),⊙P的半徑為,則點P的坐標為_______.12.如圖,某小型水庫欄水壩的橫斷面是四邊形ABCD,DC∥AB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.2:1,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m.13.用換元法解方程時,如果設,那么原方程化成以為“元”的方程是________.14.按照一定規(guī)律排列依次為,…..按此規(guī)律,這列數中的第100個數是_____.15.已知b是a,c的比例中項,若a=4,c=16,則b=________.16.如圖AB是直徑,C、D、E為圓周上的點,則______.三、解答題(共8題,共72分)17.(8分)如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中A、C、E在同一直線上.求斜坡CD的高度DE;求大樓AB的高度;(參考數據:sin64°≈0.9,tan64°≈2).18.(8分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b的圖象與反比例函數y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數y=kx+b的關系式;(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標.19.(8分)如圖所示,點P位于等邊△ABC的內部,且∠ACP=∠CBP.(1)∠BPC的度數為________°;(2)延長BP至點D,使得PD=PC,連接AD,CD.①依題意,補全圖形;②證明:AD+CD=BD;(3)在(2)的條件下,若BD的長為2,求四邊形ABCD的面積.20.(8分)已知反比例函數的圖象經過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當y1﹣y2=4時,求m的值;(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(不需要寫解答過程).21.(8分)綜合與實踐﹣﹣﹣折疊中的數學在學習完特殊的平行四邊形之后,某學習小組針對矩形中的折疊問題進行了研究.問題背景:在矩形ABCD中,點E、F分別是BC、AD上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.猜想與證明:(1)如圖1,當EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結論;操作與畫圖:(2)當點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標注相應的字母);操作與探究:(3)如圖3,當點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN并延長MN交EF于點O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經過的路徑的長為.22.(10分)京沈高速鐵路赤峰至喀左段正在建設中,甲、乙兩個工程隊計劃參與一項工程建設,甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.若乙隊單獨施工,需要多少天才能完成該項工程?若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?23.(12分)如圖,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,.(1)求直線的表達式;(2)若直線與矩形有公共點,求的取值范圍;(3)直線與矩形沒有公共點,直接寫出的取值范圍.24.如圖,某反比例函數圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數的解析式;若△ABC的面積為6,求直線AB的表達式.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據科學計數法的定義來表示數字,選出正確答案.【詳解】解:把一個數表示成a(1≤a<10,n為整數)與10的冪相乘的形式,這種記數法叫做科學記數法,280億用科學計數法表示為2.8×1010,所以答案選D.【點睛】本題考查學生對科學計數法的概念的掌握和將數字用科學計數法表示的能力.2、D【解析】

先求得∠A=∠BCD,然后根據銳角三角函數的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數值只與角的大小有關,因而求一個角的函數值,可以轉化為求與它相等的其它角的三角函數值.3、C【解析】

根據同底數冪的乘法法則對A進行判斷;根據積的乘方對B進行判斷;根據負整數指數冪的意義對C進行判斷;根據二次根式的加減法對D進行判斷.【詳解】解:A、原式=a3,所以A選項錯誤;B、原式=a2b2,所以B選項錯誤;C、原式=,所以C選項正確;D、原式=2,所以D選項錯誤.故選:C.【點睛】本題考查了二次根式的加減法:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數相同的二次根式進行合并,合并方法為系數相加減,根式不變.也考查了整式的運算.4、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應用-仰角俯角問題.5、C【解析】

∵當x<h時,y隨x的增大而增大,當x>h時,y隨x的增大而減小,∴①若h<1≤x≤3,x=1時,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當x=3時,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點睛:本題主要考查二次函數的性質和最值,根據二次函數的增減性和最值分兩種情況討論是解題的關鍵.6、B【解析】

直接利用平行線的性質得出∠4的度數,再利用對頂角的性質得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點睛】此題主要考查了平行線的性質,正確得出∠4的度數是解題關鍵.7、C【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值大于1時,n是正數;當原數的絕對值小于1時,n是負數.解答:解:將361000000用科學記數法表示為3.61×1.故選C.8、D【解析】

過B作BN⊥AC于N,BM⊥AD于M,根據折疊得出∠C′AB=∠CAB,根據角平分線性質得出BN=BM,根據三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項D符合,

故選D.【點睛】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.9、B【解析】

根據分式的運算法則即可求出答案.【詳解】解:原式===故選;B【點睛】本題考查分式的運算法則,解題關鍵是熟練運用分式的運算法則,本題屬于基礎題型.10、B【解析】

分別把各點代入反比例函數的解析式,求出y1,y2,y3的值,再比較出其大小即可.【詳解】∵點A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函數y=的圖象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征,反比例函數值的大小比較,熟練掌握反比例函數圖象上的點的坐標滿足函數的解析式是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(3,2).【解析】

過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.12、(7+6)【解析】

過點C作CE⊥AB,DF⊥AB,垂足分別為:E,F,得到兩個直角三角形和一個矩形,在Rt△AEF中利用DF的長,求得線段AF的長;在Rt△BCE中利用CE的長求得線段BE的長,然后與AF、EF相加即可求得AB的長.【詳解】解:如圖所示:過點C作CE⊥AB,DF⊥AB,垂足分別為:E,F,

∵壩頂部寬為2m,壩高為6m,

∴DC=EF=2m,EC=DF=6m,

∵α=30°,

∴BE=(m),

∵背水坡的坡比為1.2:1,

∴,

解得:AF=5(m),

則AB=AF+EF+BE=5+2+6=(7+6)m,

故答案為(7+6)m.【點睛】本題考查了解直角三角形的應用,解題的關鍵是利用銳角三角函數的概念和坡度的概念求解.13、y-【解析】分析:根據換元法,可得答案.詳解:﹣=1時,如果設=y,那么原方程化成以y為“元”的方程是y﹣=1.故答案為y﹣=1.點睛:本題考查了換元法解分式方程,把換元為y是解題的關鍵.14、【解析】

根據按一定規(guī)律排列的一列數依次為…,可得第n個數為,據此可得第100個數.【詳解】由題意,數列可改寫成,…,則后一個數的分子比前一個數的法則大2,后一個數的分母比前一個數的分母大3,∴第n個數為=,∴這列數中的第100個數為=;故答案為:.【點睛】本題考查數字類規(guī)律,解題的關鍵是讀懂題意,掌握數字類規(guī)律基本解題方法.15、±8【解析】

根據比例中項的定義即可求解.【詳解】∵b是a,c的比例中項,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【點睛】此題考查了比例中項的定義,如果作為比例線段的內項是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項.16、90°【解析】

連接OE,根據圓周角定理即可求出答案.【詳解】解:連接OE,

根據圓周角定理可知:

∠C=∠AOE,∠D=∠BOE,

則∠C+∠D=(∠AOE+∠BOE)=90°,

故答案為:90°.【點睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.三、解答題(共8題,共72分)17、(1)斜坡CD的高度DE是5米;(2)大樓AB的高度是34米.【解析】試題分析:(1)根據在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,高為DE,可以求得DE的高度;(2)根據銳角三角函數和題目中的數據可以求得大樓AB的高度.試題解析:(1)∵在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1:,∴,設DE=5x米,則EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)過點D作AB的垂線,垂足為H,設DH的長為x,由題意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根據勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=,∴2=,解得,x=29,AB=x+5=34,即大樓AB的高度是34米.18、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】

(1)利用反比例函數圖象上點的坐標特征可求出點A、B的坐標,再利用待定系數法即可求出直線AB的解析式;(1)根據函數圖像判斷即可;(3)利用一次函數圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據三角形的面積公式結合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結論.【詳解】(1)∵點A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數圖像可知,當kx+b>時,-6<x<0或1<x;(3)當y=x+1=0時,x=-4,∴點C(-4,0).設點P的坐標為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點P的坐標為(-6,0)或(-1,0).【點睛】本題考查了反比例函數與一次函數的交點問題、一次(反比例)函數圖象上點的坐標特征、待定系數法求一次函數解析式以及三角形的面積,解題的關鍵是:(1)根據點的坐標利用待定系數法求出直線AB的解析式;(1)根據函數圖像判斷不等式取值范圍;(3)根據三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.19、(1)120°;(2)①作圖見解析;②證明見解析;(3)3.【解析】【分析】(1)根據等邊三角形的性質,可知∠ACB=60°,在△BCP中,利用三角形內角和定理即可得;(2)①根據題意補全圖形即可;②證明△ACD≌△BCP,根據全等三角形的對應邊相等可得AD(3)如圖2,作BM⊥AD于點M,BN⊥DC延長線于點N,根據已知可推導得出BM=【詳解】(1)∵三角形ABC是等邊三角形,∴∠ACB=60°,即∠ACP+∠BCP=60°,∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,∴∠BPC=120°,故答案為120;(2)①∵如圖1所示.②在等邊△ABC中,∠ACB∴∠ACP+∵∠ACP=∴∠CBP+∴∠BPC=180°-∴∠CPD=180°-∵PD=∴△CDP∵∠ACD+∴∠ACD在△ACD和△AC=BC??∴△ACD∴AD=∴AD+(3)如圖2,作BM⊥AD于點M,BN⊥∵∠ADB=∴∠ADB=∴∠ADB=∴BM=又由(2)得,AD+∴S四邊形ABCD==32×2【點睛】本題考查了等邊三角形的性質、全等三角形的判定與性質等,熟練掌握相關性質定理、正確添加輔助線是解題的關鍵.20、(1)m=1;(2)點P坐標為(﹣2m,1)或(6m,1).【解析】

(1)先根據反比例函數的圖象經過點A(﹣4,﹣3),利用待定系數法求出反比例函數的解析式為y=12x,再由反比例函數圖象上點的坐標特征得出y1=122m=6m,y2=126m=2m,然后根據y1﹣y2(2)設BD與x軸交于點E.根據三角形PBD的面積是8列出方程12?4【詳解】解:(1)設反比例函數的解析式為y=kx∵反比例函數的圖象經過點A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函數的解析式為y=12x∵反比例函數的圖象經過點B(2m,y1),C(6m,y2),∴y1=122m=6m,y2=126m∵y1﹣y2=4,∴6m﹣2∴m=1,經檢驗,m=1是原方程的解,故m的值是1;(2)設BD與x軸交于點E,∵點B(2m,6m),C(6m,2∴D(2m,2m),BD=6m﹣2m∵三角形PBD的面積是8,∴12∴12?4∴PE=4m,∵E(2m,1),點P在x軸上,∴點P坐標為(﹣2m,1)或(6m,1).【點睛】本題考查了待定系數法求反比例函數的解析式,反比例函數圖象上點的坐標特征以及三角形的面積,正確求出雙曲線的解析式是解題的關鍵.21、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】

(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據軸對稱的性質,即可得到D'的位置;(3)依據△BEQ≌△D'FP,可得PF=QE,依據△NC'P≌△NAP,可得AN=C'N,依據Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據三線合一,即可得到MO⊥EF且MO平分EF;(4)依據點D'所經過的路徑是以O為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經過的路徑的長.【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點E由點B運動到點C的過程中,點D'所經過的路徑是以O為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長為L=.故答案為.【點睛】此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質、弧長計算公式,等腰三角形的判定與性質以及全等三角形的判定與性質的綜合應用,熟練掌握等腰三角形的判定定理和性質定理是解本題的關鍵.22、(1)乙隊單獨施工需要1天完成;(2)乙隊至少施工l8天才能完成該項工程.【解析】

(1)先求得甲隊單獨施工完成該項工程所需時間,設乙隊單獨施工需要x天完成該項工程,再根據“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)設乙隊施工y天完成該項工程,根據題意列不等式解不等式即可.【詳解】(1)由題意知,甲隊單獨施

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論