陜西史上最全的2023學(xué)年中考數(shù)學(xué)模試卷含解析及點(diǎn)睛_第1頁(yè)
陜西史上最全的2023學(xué)年中考數(shù)學(xué)模試卷含解析及點(diǎn)睛_第2頁(yè)
陜西史上最全的2023學(xué)年中考數(shù)學(xué)模試卷含解析及點(diǎn)睛_第3頁(yè)
陜西史上最全的2023學(xué)年中考數(shù)學(xué)模試卷含解析及點(diǎn)睛_第4頁(yè)
陜西史上最全的2023學(xué)年中考數(shù)學(xué)模試卷含解析及點(diǎn)睛_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.有下列四種說(shuō)法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓.其中,錯(cuò)誤的說(shuō)法有()A.1種 B.2種 C.3種 D.4種2.下列實(shí)數(shù)中,有理數(shù)是()A. B. C.π D.3.關(guān)于x的一元二次方程x2+8x+q=0有兩個(gè)不相等的實(shí)數(shù)根,則q的取值范圍是()A.q<16 B.q>16C.q≤4 D.q≥44.實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖所示,則代數(shù)式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b5.一個(gè)幾何體的三視圖如圖所示,根據(jù)圖示的數(shù)據(jù)計(jì)算出該幾何體的表面積()A.65π B.90π C.25π D.85π6.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法:①2a+b=0,②當(dāng)﹣1≤x≤3時(shí),y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函數(shù)圖象上,當(dāng)0<x1<x2時(shí),y1<y2,其中正確的是()A.①②④ B.①③ C.①②③ D.①③④7.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書簽,每個(gè)書簽上寫著一本書的名稱或一個(gè)作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機(jī)抽取兩張,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是()A. B. C. D.8.如圖,已知正五邊形內(nèi)接于,連結(jié),則的度數(shù)是()A. B. C. D.9.如圖,在矩形ABCD中,P、R分別是BC和DC上的點(diǎn),E、F分別是AP和RP的中點(diǎn),當(dāng)點(diǎn)P在BC上從點(diǎn)B向點(diǎn)C移動(dòng),而點(diǎn)R不動(dòng)時(shí),下列結(jié)論正確的是()A.線段EF的長(zhǎng)逐漸增長(zhǎng) B.線段EF的長(zhǎng)逐漸減小C.線段EF的長(zhǎng)始終不變 D.線段EF的長(zhǎng)與點(diǎn)P的位置有關(guān)10.下列四個(gè)幾何體中,主視圖與左視圖相同的幾何體有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.有一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,則a=_____,這組數(shù)據(jù)的方差是_____.12.在日本核電站事故期間,我國(guó)某監(jiān)測(cè)點(diǎn)監(jiān)測(cè)到極微量的人工放射性核素碘﹣131,其濃度為0.0000872貝克/立方米.?dāng)?shù)據(jù)“0.0000872”用科學(xué)記數(shù)法可表示為________.13.已知菱形的周長(zhǎng)為10cm,一條對(duì)角線長(zhǎng)為6cm,則這個(gè)菱形的面積是_____cm1.14.有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為_____.15.(11·湖州)如圖,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C.動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設(shè)四邊形OMPN的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于t的函數(shù)圖象大致為16.從-5,-,-,-1,0,2,π這七個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),恰好為負(fù)整數(shù)的概率為______.三、解答題(共8題,共72分)17.(8分)為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.18.(8分)城市小區(qū)生活垃圾分為:餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四種不同的類型.(1)甲投放了一袋垃圾,恰好是餐廚垃圾的概率是;(2)甲、乙分別投放了一袋垃圾,求恰好是同一類型垃圾的概率.19.(8分)問題探究(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點(diǎn)P,使△APD為等腰三角形,那么請(qǐng)畫出滿足條件的一個(gè)等腰三角形△APD,并求出此時(shí)BP的長(zhǎng);(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點(diǎn),當(dāng)AD=6時(shí),BC邊上存在一點(diǎn)Q,使∠EQF=90°,求此時(shí)BQ的長(zhǎng);問題解決(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點(diǎn)M安裝監(jiān)控裝置,用來(lái)監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達(dá)到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點(diǎn)M,使∠AMB=60°?若存在,請(qǐng)求出符合條件的DM的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.20.(8分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點(diǎn)A(–3,0)、B(1,0).(1)求平移后的拋物線的表達(dá)式.(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,當(dāng)BP與CP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?(3)若y=x2與平移后的拋物線對(duì)稱軸交于D點(diǎn),那么,在平移后的拋物線的對(duì)稱軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說(shuō)明理由.21.(8分)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x與反比例函數(shù)的圖象相交于點(diǎn).(1)求a、k的值;(2)直線x=b()分別與一次函數(shù)y=x、反比例函數(shù)的圖象相交于點(diǎn)M、N,當(dāng)MN=2時(shí),畫出示意圖并直接寫出b的值.22.(10分)如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,點(diǎn)在軸的正半軸上,且.(1)求點(diǎn)和點(diǎn)的坐標(biāo);(2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),以每秒個(gè)單位的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),過點(diǎn)的直線與軸平行,直線交邊或邊于點(diǎn),交邊或邊于點(diǎn),設(shè)點(diǎn).運(yùn)動(dòng)時(shí)間為,線段的長(zhǎng)度為,已知時(shí),直線恰好過點(diǎn).①當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式;②點(diǎn)出發(fā)時(shí)點(diǎn)也從點(diǎn)出發(fā),以每秒個(gè)單位的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)停止時(shí)點(diǎn)也停止.設(shè)的面積為,求與的函數(shù)關(guān)系式;③直接寫出②中的最大值是.23.(12分)小明對(duì),,,四個(gè)中小型超市的女工人數(shù)進(jìn)行了統(tǒng)計(jì),并繪制了下面的統(tǒng)計(jì)圖表,已知超市有女工20人.所有超市女工占比統(tǒng)計(jì)表超市女工人數(shù)占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機(jī)選出一個(gè),求正好是超市的概率;現(xiàn)在超市又招進(jìn)男、女員工各1人,超市女工占比還是75%嗎?甲同學(xué)認(rèn)為是,乙同學(xué)認(rèn)為不是.你認(rèn)為誰(shuí)說(shuō)的對(duì),并說(shuō)明理由.24.先化簡(jiǎn),再選擇一個(gè)你喜歡的數(shù)(要合適哦?。┐肭笾担?+1

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)弦的定義、弧的定義、以及確定圓的條件即可解決.【詳解】解:圓確定的條件是確定圓心與半徑,是假命題,故此說(shuō)法錯(cuò)誤;直徑是弦,直徑是圓內(nèi)最長(zhǎng)的弦,是真命題,故此說(shuō)法正確;弦是直徑,只有過圓心的弦才是直徑,是假命題,故此說(shuō)法錯(cuò)誤;④半圓是弧,但弧不一定是半圓,圓的任意一條直徑的兩個(gè)端點(diǎn)把圓分成兩條弧,每一條弧都叫半圓,所以半圓是弧.但比半圓大的弧是優(yōu)弧,比半圓小的弧是劣弧,不是所有的弧都是半圓,是真命題,故此說(shuō)法正確.

其中錯(cuò)誤說(shuō)法的是①③兩個(gè).故選B.【點(diǎn)睛】本題考查弦與直徑的區(qū)別,弧與半圓的區(qū)別,及確定圓的條件,不要將弦與直徑、弧與半圓混淆.2、B【解析】

實(shí)數(shù)分為有理數(shù),無(wú)理數(shù),有理數(shù)有分?jǐn)?shù)、整數(shù),無(wú)理數(shù)有根式下不能開方的,等,很容易選擇.【詳解】A、二次根2不能正好開方,即為無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤,

B、無(wú)限循環(huán)小數(shù)為有理數(shù),符合;

C、為無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤;

D、不能正好開方,即為無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤;故選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是實(shí)數(shù)范圍內(nèi)的有理數(shù)的判斷,解題關(guān)鍵是從實(shí)際出發(fā)有理數(shù)有分?jǐn)?shù),自然數(shù)等,無(wú)理數(shù)有、根式下開不盡的從而得到了答案.3、A【解析】∵關(guān)于x的一元二次方程x2+8x+q=0有兩個(gè)不相等的實(shí)數(shù)根,∴△>0,即82-4q>0,∴q<16,故選A.4、A【解析】

根據(jù)數(shù)軸得到b<a<0<c,根據(jù)有理數(shù)的加法法則,減法法則得到c-a>0,a+b<0,根據(jù)絕對(duì)值的性質(zhì)化簡(jiǎn)計(jì)算.【詳解】由數(shù)軸可知,b<a<0<c,∴c-a>0,a+b<0,則|c-a|-|a+b|=c-a+a+b=c+b,故選A.【點(diǎn)睛】本題考查的是實(shí)數(shù)與數(shù)軸,絕對(duì)值的性質(zhì),能夠根據(jù)數(shù)軸比較實(shí)數(shù)的大小,掌握絕對(duì)值的性質(zhì)是解題的關(guān)鍵.5、B【解析】

根據(jù)三視圖可判斷該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,再利用勾股定理計(jì)算出母線長(zhǎng),然后求底面積與側(cè)面積的和即可.【詳解】由三視圖可知該幾何體是圓錐,圓錐的高為12,圓錐的底面圓的半徑為5,所以圓錐的母線長(zhǎng)==13,所以圓錐的表面積=π×52+×2π×5×13=90π.故選B.【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).也考查了三視圖.6、B【解析】∵函數(shù)圖象的對(duì)稱軸為:x=-==1,∴b=﹣2a,即2a+b=0,①正確;由圖象可知,當(dāng)﹣1<x<3時(shí),y<0,②錯(cuò)誤;由圖象可知,當(dāng)x=1時(shí),y=0,∴a﹣b+c=0,∵b=﹣2a,∴3a+c=0,③正確;∵拋物線的對(duì)稱軸為x=1,開口方向向上,∴若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)1<x1<x2時(shí),y1<y2;當(dāng)x1<x2<1時(shí),y1>y2;故④錯(cuò)誤;故選B.點(diǎn)睛:本題主要考查二次函數(shù)的相關(guān)知識(shí),解題的關(guān)鍵是:由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理.7、D【解析】

根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是=;故選D.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.8、C【解析】

根據(jù)多邊形內(nèi)角和定理、正五邊形的性質(zhì)求出∠ABC、CD=CB,根據(jù)等腰三角形的性質(zhì)求出∠CBD,計(jì)算即可.【詳解】∵五邊形為正五邊形∴∵∴∴故選:C.【點(diǎn)睛】本題考查的是正多邊形和圓、多邊形的內(nèi)角和定理,掌握正多邊形和圓的關(guān)系、多邊形內(nèi)角和等于(n-2)×180°是解題的關(guān)鍵.9、C【解析】試題分析:連接AR,根據(jù)勾股定理得出AR=的長(zhǎng)不變,根據(jù)三角形的中位線定理得出EF=AR,即可得出線段EF的長(zhǎng)始終不變,故選C.考點(diǎn):1、矩形性質(zhì),2、勾股定理,3、三角形的中位線10、D【解析】解:①正方體的主視圖與左視圖都是正方形;②球的主視圖與左視圖都是圓;③圓錐主視圖與左視圖都是三角形;④圓柱的主視圖和左視圖都是長(zhǎng)方形;故選D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、51.【解析】∵一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,∴,解得,,∴=1.故答案為5,1.12、【解析】

科學(xué)記數(shù)法的表示形式為ax10n的形式,其中1≤lal<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:0.0000872=故答案為:【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.13、14【解析】

根據(jù)菱形的性質(zhì),先求另一條對(duì)角線的長(zhǎng)度,再運(yùn)用菱形的面積等于對(duì)角線乘積的一半求解.【詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長(zhǎng)為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【點(diǎn)睛】此題考查了菱形的性質(zhì)及面積求法,難度不大.14、1【解析】

根據(jù)眾數(shù)的概念進(jìn)行求解即可得.【詳解】在數(shù)據(jù)3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.【點(diǎn)睛】本題考查了眾數(shù)的概念,熟知一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)是解題的關(guān)鍵.15、A【解析】試題分析:①當(dāng)點(diǎn)P在OA上運(yùn)動(dòng)時(shí),OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對(duì)稱軸的二次函數(shù),開口向上;②當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),設(shè)P點(diǎn)坐標(biāo)為(x,y),則S=xy=k,為定值,故B、D選項(xiàng)錯(cuò)誤;③當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),S隨t的增大而逐漸減小,故C選項(xiàng)錯(cuò)誤.故選A.考點(diǎn):1.反比例函數(shù)綜合題;2.動(dòng)點(diǎn)問題的函數(shù)圖象.16、【解析】

七個(gè)數(shù)中有兩個(gè)負(fù)整數(shù),故隨機(jī)抽取一個(gè)數(shù),恰好為負(fù)整數(shù)的概率是:【詳解】這七個(gè)數(shù)中有兩個(gè)負(fù)整數(shù):-5,-1

所以,隨機(jī)抽取一個(gè)數(shù),恰好為負(fù)整數(shù)的概率是:故答案為【點(diǎn)睛】本題考查隨機(jī)事件的概率的計(jì)算方法,能準(zhǔn)確找出負(fù)整數(shù)的個(gè)數(shù),并熟悉等可能事件的概率計(jì)算公式是關(guān)鍵.三、解答題(共8題,共72分)17、(1)(2).【解析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.18、(1);(2)【解析】

(1)直接利用概率公式求出甲投放的垃圾恰好是“餐廚垃圾”的概率;(2)首先利用樹狀圖法列舉出所有可能,進(jìn)而利用概率公式求出答案.【詳解】解:(1)∵垃圾要按餐廚垃圾、有害垃圾、可回收垃圾、其他垃圾四類分別裝袋,甲投放了一袋垃圾,∴甲投放了一袋是餐廚垃圾的概率是,故答案為:;(2)記這四類垃圾分別為A、B、C、D,畫樹狀圖如下:由樹狀圖知,甲、乙投放的垃圾共有16種等可能結(jié)果,其中投放的兩袋垃圾同類的有4種結(jié)果,所以投放的兩袋垃圾同類的概率為=.【點(diǎn)睛】本題考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】

(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運(yùn)用三角形全等、矩形的性質(zhì)、勾股定理等知識(shí)即可解決問題.(1)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點(diǎn)Q唯一,然后通過添加輔助線,借助于正方形、特殊角的三角函數(shù)值等知識(shí)即可求出BQ長(zhǎng).(4)要滿足∠AMB=40°,可構(gòu)造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點(diǎn)就是滿足條件的點(diǎn),然后借助于等邊三角形的性質(zhì)、特殊角的三角函數(shù)值等知識(shí),就可算出符合條件的DM長(zhǎng).【詳解】(1)①作AD的垂直平分線交BC于點(diǎn)P,如圖①,則PA=PD.∴△PAD是等腰三角形.∵四邊形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以點(diǎn)D為圓心,AD為半徑畫弧,交BC于點(diǎn)P′,如圖①,則DA=DP′.∴△P′AD是等腰三角形.∵四邊形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③點(diǎn)A為圓心,AD為半徑畫弧,交BC于點(diǎn)P″,如圖①,則AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.綜上所述:在等腰三角形△ADP中,若PA=PD,則BP=1;若DP=DA,則BP=2-;若AP=AD,則BP=.(1)∵E、F分別為邊AB、AC的中點(diǎn),∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF為直徑作⊙O,過點(diǎn)O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.∵AD⊥BC,AD=4,∴EF與BC之間的距離為4.∴OQ=4∴OQ=OE=4.∴⊙O與BC相切,切點(diǎn)為Q.∵EF為⊙O的直徑,∴∠EQF=90°.過點(diǎn)E作EG⊥BC,垂足為G,如圖②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四邊形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴當(dāng)∠EQF=90°時(shí),BQ的長(zhǎng)為4+.(4)在線段CD上存在點(diǎn)M,使∠AMB=40°.理由如下:以AB為邊,在AB的右側(cè)作等邊三角形ABG,作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.設(shè)GP與AK交于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑作⊙O,過點(diǎn)O作OH⊥CD,垂足為H,如圖③.則⊙O是△ABG的外接圓,∵△ABG是等邊三角形,GP⊥AB,∴AP=PB=AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等邊三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP?tan40°=145×=25.∴OA=1OP=90.∴OH<OA.∴⊙O與CD相交,設(shè)交點(diǎn)為M,連接MA、MB,如圖③.∴∠AMB=∠AGB=40°,OM=OA=90..∵OH⊥CD,OH=6,OM=90,∴HM==40.∵AE=200,OP=25,∴DH=200-25.若點(diǎn)M在點(diǎn)H的左邊,則DM=DH+HM=200-25+40.∵200-25+40>420,∴DM>CD.∴點(diǎn)M不在線段CD上,應(yīng)舍去.若點(diǎn)M在點(diǎn)H的右邊,則DM=DH-HM=200-25-40.∵200-25-40<420,∴DM<CD.∴點(diǎn)M在線段CD上.綜上所述:在線段CD上存在唯一的點(diǎn)M,使∠AMB=40°,此時(shí)DM的長(zhǎng)為(200-25-40)米.【點(diǎn)睛】本題考查了垂直平分線的性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、正方形的判定與性質(zhì)、直線與圓的位置關(guān)系、圓周角定理、三角形的中位線定理、全等三角形的判定與性質(zhì)、勾股定理、特殊角的三角函數(shù)值等知識(shí),考查了操作、探究等能力,綜合性非常強(qiáng).而構(gòu)造等邊三角形及其外接圓是解決本題的關(guān)鍵.20、(1)y=x2+2x﹣3;(2)點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【解析】

(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達(dá)式;(2)先根據(jù)平移后拋物線解析式求得其對(duì)稱軸,從而得出點(diǎn)C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)C′坐標(biāo),連接BC′,與對(duì)稱軸交點(diǎn)即為所求點(diǎn)P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點(diǎn)D的坐標(biāo),由點(diǎn)O、B、E、D的坐標(biāo)可求得OB、OE、DE、BD的長(zhǎng),從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形與△BOD相似.由比例式可求得MD的長(zhǎng),于是可求得點(diǎn)M的坐標(biāo).【詳解】(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x﹣1),∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,∴平移后拋物線的二次項(xiàng)系數(shù)為1,即a=1,∴平移后拋物線的表達(dá)式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對(duì)稱軸為直線x=﹣1,與y軸的交點(diǎn)C(0,﹣3),則點(diǎn)C關(guān)于直線x=﹣1的對(duì)稱點(diǎn)C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點(diǎn)即為所求點(diǎn)P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點(diǎn)M只能在點(diǎn)D上方,∵∠BOD=∠ODM=135°,∴當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形△BOD相似,①若,則,解得DM=2,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,3);②若,則,解得DM=1,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,2);綜上,點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【點(diǎn)睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了平移的性質(zhì)、翻折的性質(zhì)、二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、等腰直角三角形的性質(zhì)、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關(guān)鍵.21、(1),k=2;(2)b=2或1.【解析】

(1)依據(jù)直線y=x與雙曲線(k≠0)相交于點(diǎn),即可得到a、k的值;(2)分兩種情況:當(dāng)直線x=b在點(diǎn)A的左側(cè)時(shí),由x=2,可得x=1,即b=1;當(dāng)直線x=b在點(diǎn)A的右側(cè)時(shí),由x2,可得x=2,即b=2.【詳解】(1)∵直線y=x與雙曲線(k≠0)相交于點(diǎn),∴,∴,∴,解得:k=2;(2)如圖所示:當(dāng)直線x=b在點(diǎn)A的左側(cè)時(shí),由x=2,可得:x=1,x=﹣2(舍去),即b=1;當(dāng)直線x=b在點(diǎn)A的右側(cè)時(shí),由x2,可得x=2,x=﹣1(舍去),即b=2;綜上

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論