版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,等邊△ABC的邊長為4,點D,E分別是BC,AC的中點,動點M從點A向點B勻速運動,同時動點N沿B﹣D﹣E勻速運動,點M,N同時出發(fā)且運動速度相同,點M到點B時兩點同時停止運動,設點M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數關系的圖象是()A. B.C. D.2.如圖所示,在方格紙上建立的平面直角坐標系中,將△ABC繞點O按順時針方向旋轉90°,得到△A′B′O,則點A′的坐標為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)3.已知兩組數據,2、3、4和3、4、5,那么下列說法正確的是()A.中位數不相等,方差不相等B.平均數相等,方差不相等C.中位數不相等,平均數相等D.平均數不相等,方差相等4.如圖所示的圖形為四位同學畫的數軸,其中正確的是()A. B.C. D.5.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.6.已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數是()A.1 B.2 C.3 D.47.二次函數y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中結論正確的個數是()A.1 B.2 C.3 D.48.若關于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠19.某班將舉行“慶祝建黨95周年知識競賽”活動,班長安排小明購買獎品,如圖是小明買回獎品時與班長的對話情境:請根據如圖對話信息,計算乙種筆記本買了()A.25本 B.20本 C.15本 D.10本10.如圖,二次函數y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0,其中正確結論的個數是A.5個 B.4個 C.3個 D.2個二、填空題(本大題共6個小題,每小題3分,共18分)11.有一枚材質均勻的正方體骰子,它的六個面上分別有1點、2點、…、6點的標記,擲一次骰子,向上的一面出現(xiàn)的點數是素數的概率是_____.12.方程的根為_____.13.如圖,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2,若,用、表示=_____.14.如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.15.將一個底面半徑為2,高為4的圓柱形紙筒沿一條母線剪開,所得到的側面展開圖形面積為_____.16.如圖,AC、BD為圓O的兩條垂直的直徑,動點P從圓心O出發(fā),沿線段OC-A.B.C.D.三、解答題(共8題,共72分)17.(8分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結果保留根號).18.(8分)如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點的拋物線解析式;(2)設拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.圖1備用圖19.(8分)如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點A、B、C、D均在小正方形的頂點上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點E在小正方形的頂點上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點字母按逆時針順序),且面積為10,點M、N均在小正方形的頂點上;(3)連接ME,并直接寫出EM的長.20.(8分)先化簡,再求值:,其中x=﹣1.21.(8分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.(1)求拋物線的解析式;(2)當PO+PC的值最小時,求點P的坐標;(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.22.(10分)為了保護視力,學校開展了全校性的視力保健活動,活動前,隨機抽取部分學生,檢查他們的視力,結果如圖所示(數據包括左端點不包括右端點,精確到0.1);活動后,再次檢查這部分學生的視力,結果如表所示分組頻數4.0≤x<4.224.2≤x<4.434.4≤x<4.654.6≤x<4.884.8≤x<5.0175.0≤x<5.25(1)求活動所抽取的學生人數;(2)若視力達到4.8及以上為達標,計算活動前該校學生的視力達標率;(3)請選擇適當的統(tǒng)計量,從兩個不同的角度評價視力保健活動的效果.23.(12分)在平面直角坐標系中,△ABC的頂點坐標是A(﹣2,3),B(﹣4,﹣1),C(2,0).點P(m,n)為△ABC內一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.(1)畫出△A1B1C1(2)將△ABC繞坐標點C逆時針旋轉90°得到△A2B2C,畫出△A2B2C;(3)在(2)的條件下求BC掃過的面積.24.如圖,在⊙O的內接四邊形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求證:△ABD是等邊三角形;(2)若BD=3,求⊙O的半徑.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據題意,將運動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點D到AB距離為,當0≤x≤2時,y=;當2≤x≤4時,y=.根據函數解析式,A符合條件.故選A.【點睛】本題為動點問題的函數圖象,解答關鍵是找到動點到達臨界點前后的一般圖形,分類討論,求出函數關系式.2、D【解析】
解決本題抓住旋轉的三要素:旋轉中心O,旋轉方向順時針,旋轉角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標為(-3,1),根據旋轉中心O,旋轉方向順時針,旋轉角度90°,畫圖,從而得A′點坐標為(1,3).故選D.3、D【解析】
分別利用平均數以及方差和中位數的定義分析,進而求出答案.【詳解】2、3、4的平均數為:(2+3+4)=3,中位數是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數為:(3+4+5)=4,中位數是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數不相等,方差相等.故選:D.【點睛】本題考查了平均數、中位數、方差的意義,解答本題的關鍵是熟練掌握這三種數的計算方法.4、D【解析】
根據數軸三要素:原點、正方向、單位長度進行判斷.【詳解】A選項圖中無原點,故錯誤;B選項圖中單位長度不統(tǒng)一,故錯誤;C選項圖中無正方向,故錯誤;D選項圖形包含數軸三要素,故正確;故選D.【點睛】本題考查數軸的畫法,熟記數軸三要素是解題的關鍵.5、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.6、D【解析】
由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】①∵拋物線對稱軸是y軸的右側,∴ab<0,∵與y軸交于負半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故③正確;④當x=﹣1時,y>0,∴a﹣b+c>0,故④正確.故選D.【點睛】本題主要考查了圖象與二次函數系數之間的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數確定.7、C【解析】
試題解析:∵圖象與x軸有兩個交點,∴方程ax2+bx+c=0有兩個不相等的實數根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正確;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正確;∵當x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③錯誤;∵由圖象可知x=﹣1時該二次函數取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正確∴正確的有①②④三個,故選C.考點:二次函數圖象與系數的關系.【詳解】請在此輸入詳解!8、C【解析】
根據題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關鍵是熟練掌握:當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.9、C【解析】
設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意列出關于x、y的二元一次方程組,求出x、y的值即可.【詳解】解:設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意,得:,解得:,答:甲種筆記本買了25本,乙種筆記本買了15本.故選C.【點睛】本題考查的是二元二次方程組的應用,能根據題意得出關于x、y的二元二次方程組是解答此題的關鍵.10、B【解析】
解:∵二次函數y=ax3+bx+c(a≠3)過點(3,3)和(﹣3,3),∴c=3,a﹣b+c=3.①∵拋物線的對稱軸在y軸右側,∴,x>3.∴a與b異號.∴ab<3,正確.②∵拋物線與x軸有兩個不同的交點,∴b3﹣4ac>3.∵c=3,∴b3﹣4a>3,即b3>4a.正確.④∵拋物線開口向下,∴a<3.∵ab<3,∴b>3.∵a﹣b+c=3,c=3,∴a=b﹣3.∴b﹣3<3,即b<3.∴3<b<3,正確.③∵a﹣b+c=3,∴a+c=b.∴a+b+c=3b>3.∵b<3,c=3,a<3,∴a+b+c=a+b+3<a+3+3=a+3<3+3=3.∴3<a+b+c<3,正確.⑤拋物線y=ax3+bx+c與x軸的一個交點為(﹣3,3),設另一個交點為(x3,3),則x3>3,由圖可知,當﹣3<x<x3時,y>3;當x>x3時,y<3.∴當x>﹣3時,y>3的結論錯誤.綜上所述,正確的結論有①②③④.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
先判斷擲一次骰子,向上的一面的點數為素數的情況,再利用概率公式求解即可.【詳解】解:∵擲一次這枚骰子,向上的一面的點數為素數的有2,3,5共3種情況,∴擲一次這枚骰子,向上的一面的點數為素數的概率是:.故答案為:.【點睛】本題考查了求簡單事件的概率,根據題意判斷出素數的個數是解題的關鍵.12、﹣2或﹣7【解析】
把無理方程轉化為整式方程即可解決問題.【詳解】兩邊平方得到:13+2=25,∴=6,∴(x+11)(2-x)=36,解得x=-2或-7,經檢驗x=-2或-7都是原方程的解.故答案為-2或-7【點睛】本題考查無理方程,解題的關鍵是學會把無理方程轉化為整式方程.13、【解析】
過點A作AE⊥DC,利用向量知識解題.【詳解】解:過點A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四邊形AECB是矩形,∴AB=EC,AE=BC=4,∴DE===2,∴AB=EC=2=DC,∵,∴,∵,∴,∴,故答案為.【點睛】向量知識只有使用滬教版(上海)教材的學生才學過,全國絕大部分地區(qū)將向量放在高中階段學習.14、【解析】
由矩形的性質可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質和折疊的性質可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.【詳解】解:四邊形ABCD是矩形,,,折疊,在中,,,.故答案為:.【點睛】本題考查了翻折變換,矩形的性質,勾股定理,利用勾股定理求AF的長是本題的關鍵.15、【解析】試題分析:先根據勾股定理求得圓錐的母線長,再根據圓錐的側面積公式求解即可.由題意得圓錐的母線長則所得到的側面展開圖形面積.考點:勾股定理,圓錐的側面積公式點評:解題的關鍵是熟記圓錐的側面積公式:圓錐的側面積底面半徑母線.16、C.【解析】分析:根據動點P在OC上運動時,∠APB逐漸減小,當P在上運動時,∠APB不變,當P在DO上運動時,∠APB逐漸增大,即可得出答案.解答:解:當動點P在OC上運動時,∠APB逐漸減??;當P在上運動時,∠APB不變;當P在DO上運動時,∠APB逐漸增大.故選C.三、解答題(共8題,共72分)17、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,F(xiàn)M=MC.如圖③中,當FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【點睛】本題考查了圓的綜合題:熟練掌握與圓有關的性質、圓的內接正方形的性質和旋轉的性質;靈活利用全等三角形的性質;會利用面積的和差計算不規(guī)則幾何圖形的面積.18、見解析【解析】分析:(1)根據求出點的坐標,用待定系數法即可求出拋物線的解析式.(2)分兩種情況進行討論即可.(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.分當平行四邊形是平行四邊形時,當平行四邊形AONM是平行四邊形時,當四邊形AMON為平行四邊形時,三種情況進行討論.詳解:(1)易證,得,∴OC=2,∴C(0,2),∵拋物線過點A(-1,0),B(4,0)因此可設拋物線的解析式為將C點(0,2)代入得:,即∴拋物線的解析式為(2)如圖2,當時,則P1(,2),當時,∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P點的坐標為(,2)或(,5).(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.如圖3,當平行四邊形是平行四邊形時,M(,),(,),當平行四邊形AONM是平行四邊形時,M(,),N(,),如圖4,當四邊形AMON為平行四邊形時,MN與OA互相平分,此時可設M(,m),則∵點N在拋物線上,∴-m=-·(-+1)(--4)=-,∴m=,此時M(,),N(-,-).綜上所述,M(,),N(,)或M(,),N(,)或M(,),N(-,-).點睛:屬于二次函數綜合題,考查相似三角形的判定與性質,待定系數法求二次函數解析式等,注意分類討論的思想方法在數學中的應用.19、(1)畫圖見解析;(2)畫圖見解析;(3).【解析】
(1)直接利用直角三角形的性質結合勾股定理得出符合題意的圖形;(2)根據矩形的性質畫出符合題意的圖形;
(3)根據題意利用勾股定理得出結論.【詳解】(1)如圖所示;(2)如圖所示;(3)如圖所示,在直角三角形中,根據勾股定理得EM=.【點睛】本題考查了勾股定理與作圖,解題的關鍵是熟練的掌握直角三角形的性質與勾股定理.20、.【解析】試題分析:試題解析:原式===當x=時,原式=.考點:分式的化簡求值.21、(1)y=x2+3x;(2)當PO+PC的值最小時,點P的坐標為(2,);(3)存在,具體見解析.【解析】
(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數法可求得拋物線解析式;(2)D與P重合時有最小值,求出點D的坐標即可;(3)存在,分別根據①AC為對角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經過O、A兩點,且頂點在BC邊上,∴拋物線頂點坐標為(2,3),∴可設拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當點P與點D重合時,PA+PC=AC;當點P不與點D重合時,PA+PC>AC;∴當點P與點D重合時,PO+PC的值最小,設直線AC的解析式為y=kx+b,根據題意,得解得∴直線AC的解析式為,當x=2時,,∴當PO+PC的值最小時,點P的坐標為(2,);(3)存在.①AC為對角線,當四邊形AQCP為平行四邊形,點Q為拋物線的頂點,即Q(2,3),則P(2,0);②AC為邊,當四邊形AQPC為平行四邊形,點C向右平移2個單位得到P,則點A向右平移2個單位得到點Q,則Q點的橫坐標為6,當x=6時,,此時Q(6,?9),則點A(4,0)向右平移2個單位,向下平移9個單位得到點Q,所以點C(0,3)向右平移2個單位,向下平移9個單位得到點P,則P(2,?6);當四邊形APQC為平行四邊形,點A向左平移2個單位得到P,則點C向左平移2個單位得到點Q,則Q點的橫坐標為?2,當x=?2時,,此時Q(?2,?9),則點C(0,3)向左平移2個單位,向下平移12個單位得到點Q,所以點A(4,0)向左平移2個單位,向下平移12個單位得到點P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點睛】二次函數的綜合應用,涉及矩形的性質、待定系數法、平行四邊形的性質、方程思想及分類討論思想等知識.22、(1)所抽取的學生人數為40人(2)37.5%(3)①視力x<4.4之間活動前有9人,活動后只有5人,人數明顯減少.②活動前合格率37.5%,活動后合格率55%,說明視力保健活動的效果比較好【解析】【分析】(1)求出頻數之和即可;(2)根據合格率=合格人數÷總人數×100%即可得解;(3)從兩個不同的角度分析即可,答案不唯一.【詳解】(1)∵頻數之和=3+6+7+9+10+5=40,∴所抽取的學生人數為40人;(2)活動前該校學生的視力達標率=×100%=37.5%;(3)①視力x<4.4之間活動前有9人,活動后只有5人,人數明顯減少;②活動前合格率37.5%,活動后合格率55%,說明視力保健活
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 六年級品德與社會下冊 和諧的大自然教學實錄 遼海版
- 大學實習心得(15篇)
- 人教版初中七年級下冊歷史與社會 5.3.2 東部和西部差異顯著 教學實錄
- 山東省膠南市大場鎮(zhèn)中心中學七年級體育《跳躍:多種形式的跳躍》教學實錄 新人教版
- 金庸作品全集(新修版)(全36冊)
- 七年級生物下冊 2.1.4 食品安全教學實錄 (新版)冀教版
- 2022年人教版初一歷史上冊電子課本
- 2022房地產辭職報告15篇
- 惠普hp打印機各機型維修方法
- 環(huán)保倡議書范文集錦十篇
- 政府專項債務知識講座
- 中國銀屑病診療指南(2018完整版)
- 居民自建樁安裝告知書回執(zhí)
- 《技術投標書(模板)》正規(guī)范本(通用版)
- 雨水回用池專項施工方案
- 一年級期末無紙筆化測評方案
- 杉木防水施工方案
- 新能源電動汽車參考文獻有哪些
- 數字信號實驗報告 IIR數字濾波器設計
- 子宮動靜脈瘺課件
- 國土資源調查與管理
評論
0/150
提交評論