版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題03平面向量小題全歸類【命題規(guī)律】平面向量的數(shù)量積、模、夾角是高考考查的重點(diǎn)、熱點(diǎn),往往以選擇題或填空題的形式出現(xiàn).常常以平面圖形為載體,考查數(shù)量積、夾角、垂直的條件等問題;也易同平面幾何、三角函數(shù)、解析幾何、不等式等知識(shí)相結(jié)合,以工具的形式出現(xiàn).近幾年高考主要考查平面向量的坐標(biāo)運(yùn)算、模的最值、夾角等問題,與三角函數(shù)、解析幾何密切相連,難度為中等.【核心考點(diǎn)目錄】核心考點(diǎn)一:平面向量基本定理及其應(yīng)用核心考點(diǎn)二:平面向量共線的充要條件及其應(yīng)用核心考點(diǎn)三:平面向量的數(shù)量積核心考點(diǎn)四:平面向量的模與夾角核心考點(diǎn)五:等和線問題核心考點(diǎn)六:極化恒等式核心考點(diǎn)七:矩形大法核心考點(diǎn)八:平面向量范圍與最值問題【真題回歸】1.已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.5 D.6【答案】C【解析】SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:C2.在SKIPIF1<0中,點(diǎn)D在邊AB上,SKIPIF1<0.記SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】因?yàn)辄c(diǎn)D在邊AB上,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:B.3.在SKIPIF1<0中,SKIPIF1<0.P為SKIPIF1<0所在平面內(nèi)的動(dòng)點(diǎn),且SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】依題意如圖建立平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上運(yùn)動(dòng),設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;故選:D4.在SKIPIF1<0中,SKIPIF1<0,D是AC中點(diǎn),SKIPIF1<0,試用SKIPIF1<0表示SKIPIF1<0為___________,若SKIPIF1<0,則SKIPIF1<0的最大值為____________【答案】
SKIPIF1<0
SKIPIF1<0【解析】方法一:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),而SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.方法二:如圖所示,建立坐標(biāo)系:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,以SKIPIF1<0為半徑的圓,當(dāng)且僅當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí),SKIPIF1<0最大,此時(shí)SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【方法技巧與總結(jié)】1、平面向量的應(yīng)用考向主要是平面幾何問題,往往涉及角和距離,轉(zhuǎn)化成平面向量的夾角、模的問題,總的思路有:(1)坐標(biāo)法:把幾何圖形放在適當(dāng)?shù)淖鴺?biāo)系中,則有關(guān)點(diǎn)與向量就可以用坐標(biāo)表示,這樣就能進(jìn)行相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問題得到解決.(2)基向量法:適當(dāng)選取一組基底,溝通向量之間的聯(lián)系,利用向量間的關(guān)系構(gòu)造關(guān)于未知量的方程進(jìn)行求解.2、平面向量中有關(guān)范圍最值問題的求解通常有兩種思路:①“形化”,即利用平面向量的幾何意義將問題轉(zhuǎn)化為平面幾何中的最值或范圍問題,然后根據(jù)平面圖形的特征直接進(jìn)行判斷;②“數(shù)化”,即利用平面向量的坐標(biāo)運(yùn)算,把問題轉(zhuǎn)化為代數(shù)中的函數(shù)最值與值域、不等式的解集、方程有解等問題,然后利用函數(shù)、不等式、方程的有關(guān)知識(shí)來解決.【核心考點(diǎn)】核心考點(diǎn)一:平面向量基本定理及其應(yīng)用【規(guī)律方法】1、應(yīng)用平面向量基本定理表示向量的實(shí)質(zhì)是利用平行四邊形法則或三角形法則進(jìn)行向量的加、減或數(shù)乘運(yùn)算.2、用基底表示某個(gè)向量的基本方法:(1)觀察各向量的位置;(2)尋找相應(yīng)的三角形或多邊形;(3)運(yùn)用法則找關(guān)系;(4)化簡(jiǎn)結(jié)果.【典型例題】例1.如圖,在SKIPIF1<0中,點(diǎn)D是邊AB上一點(diǎn)且SKIPIF1<0,E是邊BC的中點(diǎn),直線AE和直線CD交于點(diǎn)F,若BF是SKIPIF1<0的平分線,則SKIPIF1<0(
)A.4 B.3 C.2 D.SKIPIF1<0【答案】C【解析】因?yàn)锽F是SKIPIF1<0的平分線,所以存在一個(gè)實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0,(根據(jù)角平分線的條件,選擇合適的基底)因?yàn)镋是邊BC的中點(diǎn),所以SKIPIF1<0,又點(diǎn)A,E,F(xiàn)共線,所以SKIPIF1<0①.(三點(diǎn)共線的應(yīng)用:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為實(shí)數(shù)),若A,B,C三點(diǎn)共線,則SKIPIF1<0)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又點(diǎn)C,F(xiàn),D共線,所以SKIPIF1<0②,聯(lián)立①②,得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.故選:C.例2.如圖,在平行四邊形SKIPIF1<0中,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0(SKIPIF1<0),若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.4【答案】B【解析】方法1:在平行四邊形SKIPIF1<0中,因?yàn)镾KIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,(平面向量基本定理的應(yīng)用)又∵SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,故選:B.方法2:如圖,以A為坐標(biāo)原點(diǎn),SKIPIF1<0所在直線為SKIPIF1<0軸建立平面直角坐標(biāo)系,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0則SKIPIF1<0,又∵SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0即:SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0由②得SKIPIF1<0,將其代入①得SKIPIF1<0,故選:B.例3.在平行四邊形SKIPIF1<0中,SKIPIF1<0是邊SKIPIF1<0的中點(diǎn),SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0.設(shè)SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,且SKIPIF1<0三點(diǎn)共線,則SKIPIF1<0共線,即SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0不共線,則有SKIPIF1<0,解得SKIPIF1<0,所以,SKIPIF1<0.故選:D.例4.如圖,在平行四邊形SKIPIF1<0中,SKIPIF1<0分別為SKIPIF1<0上的點(diǎn),且SKIPIF1<0,連接SKIPIF1<0交于SKIPIF1<0點(diǎn),若SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0則SKIPIF1<0顯然SKIPIF1<0得SKIPIF1<0顯然SKIPIF1<0因?yàn)镾KIPIF1<0所以有SKIPIF1<0即SKIPIF1<0根據(jù)向量的性質(zhì)可知SKIPIF1<0解得SKIPIF1<0故選:C例5.已知平面向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,點(diǎn)D滿足SKIPIF1<0,E為SKIPIF1<0的外心,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,以O(shè)為原點(diǎn),OA,垂直于OA所在直線為x,y軸建立平面直角坐標(biāo)系,如圖所示,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0又SKIPIF1<0,知SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0又E為SKIPIF1<0的外心,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0為等邊三角形,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:A例6.(多選題)如圖,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【解析】為了判斷下面的有關(guān)結(jié)論,先引入三點(diǎn)共線向量形式的充要條件,設(shè)SKIPIF1<0三點(diǎn)共線,O為線外一點(diǎn),則SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0前系數(shù)和為1,證:SKIPIF1<0三點(diǎn)共線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,故A錯(cuò);SKIPIF1<0三點(diǎn)共線,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,∴F為BE的中點(diǎn),SKIPIF1<0,故B對(duì);SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故C對(duì);取AB中點(diǎn)G,BC中點(diǎn)H,如下圖,則SKIPIF1<0三點(diǎn)共線,SKIPIF1<0SKIPIF1<0,故D對(duì).故選:BCD.例7.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為__________.【答案】SKIPIF1<0【解析】由已知可得,SKIPIF1<0,SKIPIF1<0.因?yàn)椋琒KIPIF1<0三點(diǎn)共線,設(shè)SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0,因?yàn)镾KIPIF1<0三點(diǎn)共線,則存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,因?yàn)椋琒KIPIF1<0不共線,所以有SKIPIF1<0,解得SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.例8.根據(jù)畢達(dá)哥拉斯定理,以直角三角形的三條邊為邊長(zhǎng)作正方形,從斜邊上作出的正方形的面積正好等于在兩直角邊上作出的正方形面積之和.現(xiàn)在對(duì)直角三角形SKIPIF1<0按上述操作作圖后,得如圖所示的圖形,若SKIPIF1<0,則SKIPIF1<0____________.【答案】SKIPIF1<0【解析】如圖,以A為原點(diǎn),分別以SKIPIF1<0為SKIPIF1<0軸建立平面直角坐標(biāo)系,設(shè)正方形SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0,則正方形SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0,正方形SKIPIF1<0邊長(zhǎng)為SKIPIF1<0可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0又SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0故答案為:SKIPIF1<0核心考點(diǎn)二:平面向量共線的充要條件及其應(yīng)用【規(guī)律方法】1、平面向量共線定理:已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0三點(diǎn)共線;反之亦然.2、兩平面向量共線的充要條件有兩種形式:(1)若向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的充要條件是SKIPIF1<0;(2)若SKIPIF1<0,則SKIPIF1<0.【典型例題】例9.已知點(diǎn)SKIPIF1<0是SKIPIF1<0的中線SKIPIF1<0的中點(diǎn),過點(diǎn)SKIPIF1<0的直線交邊SKIPIF1<0于點(diǎn)SKIPIF1<0,交邊SKIPIF1<0于點(diǎn)SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0是SKIPIF1<0中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0三點(diǎn)共線,SKIPIF1<0,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),SKIPIF1<0的最小值為SKIPIF1<0.故選:B.例10.已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【解析】由題設(shè)SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0例11.已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的夾角為銳角,則實(shí)數(shù)SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0與SKIPIF1<0的夾角為銳角,所以SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0不共線,所以SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0,故答案為:SKIPIF1<0例12.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為__________.【答案】SKIPIF1<0【解析】由已知可得,SKIPIF1<0,SKIPIF1<0.因?yàn)?,SKIPIF1<0三點(diǎn)共線,設(shè)SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0,因?yàn)镾KIPIF1<0三點(diǎn)共線,則存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,因?yàn)?,SKIPIF1<0不共線,所以有SKIPIF1<0,解得SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.例13.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別是邊SKIPIF1<0,SKIPIF1<0上的點(diǎn),且SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是線段SKIPIF1<0上異于端點(diǎn)的一點(diǎn),且滿足SKIPIF1<0,則SKIPIF1<0_________.【答案】8【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,故SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0例14.(2022·遼寧沈陽·高三階段練習(xí))如圖,點(diǎn)G為SKIPIF1<0的重心,過點(diǎn)G的直線分別交直線AB,AC點(diǎn)D,E兩點(diǎn),SKIPIF1<0,SKIPIF1<0,則m+n=______.【答案】1【解析】延長(zhǎng)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,因?yàn)辄c(diǎn)G為△ABC的重心,則SKIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0三點(diǎn)共線,所以SKIPIF1<0.故答案為:1核心考點(diǎn)三:平面向量的數(shù)量積【規(guī)律方法】1、向量的數(shù)量積:設(shè)兩個(gè)非零向量SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0叫做SKIPIF1<0與SKIPIF1<0的數(shù)量積,記作SKIPIF1<0.2、數(shù)量積的幾何意義:數(shù)量積SKIPIF1<0等于SKIPIF1<0的長(zhǎng)度SKIPIF1<0與SKIPIF1<0在SKIPIF1<0的方向上的投影SKIPIF1<0的乘積.3、設(shè)向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由此得到:(1)若SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0.(2)設(shè)SKIPIF1<0,則A,B兩點(diǎn)間的距離SKIPIF1<0SKIPIF1<0(3)設(shè)兩個(gè)非零向量SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0(4)若SKIPIF1<0都是非零向量,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的夾角,則SKIPIF1<0【典型例題】例15.已知A,B,C,D在同一平面上,其中SKIPIF1<0,若點(diǎn)B,C,D均在面積為SKIPIF1<0的圓上,則SKIPIF1<0(
)A.36 B.SKIPIF1<0 C.18 D.SKIPIF1<0【答案】B【解析】依題意可知:圓的半徑為SKIPIF1<0,設(shè)圓心為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為圓的直徑,因?yàn)镾KIPIF1<0,則SKIPIF1<0為等邊三角形,所以SKIPIF1<0所成的角為SKIPIF1<0,則SKIPIF1<0所成的角為SKIPIF1<0,所以SKIPIF1<0,故選:B.例16.在SKIPIF1<0中,內(nèi)角SKIPIF1<0所對(duì)的邊分別為SKIPIF1<0,且SKIPIF1<0,點(diǎn)SKIPIF1<0為外心,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.10 D.20【答案】C【解析】記SKIPIF1<0的中點(diǎn)為SKIPIF1<0,連結(jié)SKIPIF1<0,如圖,因?yàn)辄c(diǎn)SKIPIF1<0為SKIPIF1<0的外心,SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故選:C.例17.已知菱形SKIPIF1<0的邊長(zhǎng)為2,SKIPIF1<0,SKIPIF1<0是菱形SKIPIF1<0內(nèi)一點(diǎn),若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】D【解析】在菱形SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0為等邊三角形,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0三點(diǎn)共線,所以SKIPIF1<0為SKIPIF1<0的中線,同理可得點(diǎn)SKIPIF1<0的中線過點(diǎn)SKIPIF1<0,所以點(diǎn)SKIPIF1<0為SKIPIF1<0的重心,故SKIPIF1<0,在等邊SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,所以SKIPIF1<0.故選:D.例18.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0垂直平分線SKIPIF1<0上任一異于SKIPIF1<0的點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.4 C.7 D.SKIPIF1<0【答案】C【解析】因?yàn)樵赟KIPIF1<0中,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0為直角三角形,所以SKIPIF1<0因?yàn)镾KIPIF1<0為線段SKIPIF1<0垂直平分線SKIPIF1<0上任一異于SKIPIF1<0的點(diǎn),所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0故選:C例19.已知SKIPIF1<0的外接圓的圓心為SKIPIF1<0,半徑為1,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0又是外接圓圓心,則SKIPIF1<0為直角三角形,SKIPIF1<0為SKIPIF1<0在SKIPIF1<0上的投影向量,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的外接圓半徑為1,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,故選:B.核心考點(diǎn)四:平面向量的模與夾角【規(guī)律方法】(1)向量的夾角要求向量“共起點(diǎn)”,其范圍為SKIPIF1<0.(2)求非零向量SKIPIF1<0的夾角一般利用公式SKIPIF1<0先求出夾角的余弦值,然后求夾角.也可以構(gòu)造三角形,將所求夾角轉(zhuǎn)化為三角形的內(nèi)角求解,更為直觀形象.【典型例題】例20.設(shè)SKIPIF1<0,SKIPIF1<0,若對(duì)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角等于(
)A.30° B.60° C.120° D.150°【答案】D【解析】SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0對(duì)SKIPIF1<0恒成立,即SKIPIF1<0對(duì)SKIPIF1<0恒成立,SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的夾角等于150°,故選:D.例21.已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且對(duì)任意實(shí)數(shù)SKIPIF1<0,不等式SKIPIF1<0恒成立,設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0要想不等式SKIPIF1<0恒成立,只需SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則有SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0,故選:D例22.已知向量SKIPIF1<0與SKIPIF1<0的夾角是SKIPIF1<0,且SKIPIF1<0,則向量SKIPIF1<0與SKIPIF1<0的夾角是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由向量的平方等于模長(zhǎng)的平方可得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,即向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,故選:D.例23.已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0或SKIPIF1<0(舍)所以,SKIPIF1<0SKIPIF1<0故選:D例24.已知向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:C.例25.已知SKIPIF1<0為等邊三角形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.4【答案】C【解析】由題意知SKIPIF1<0為等邊三角形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故選:C.核心考點(diǎn)五:等和線問題【規(guī)律方法】等和線平面內(nèi)一組基底SKIPIF1<0及任一向量SKIPIF1<0,SKIPIF1<0,若點(diǎn)SKIPIF1<0在直線SKIPIF1<0上或者在平行于SKIPIF1<0的直線上,則SKIPIF1<0(定值),反之也成立,我們把直線SKIPIF1<0以及與直線SKIPIF1<0平行的直線稱為等和線.①當(dāng)?shù)群途€恰為直線SKIPIF1<0時(shí),SKIPIF1<0;②當(dāng)?shù)群途€在SKIPIF1<0點(diǎn)和直線SKIPIF1<0之間時(shí),SKIPIF1<0;③當(dāng)直線SKIPIF1<0在點(diǎn)SKIPIF1<0和等和線之間時(shí),SKIPIF1<0;④當(dāng)?shù)群途€過SKIPIF1<0點(diǎn)時(shí),SKIPIF1<0;⑤若兩等和線關(guān)于SKIPIF1<0點(diǎn)對(duì)稱,則定值SKIPIF1<0互為相反數(shù);【典型例題】例26.在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0上的動(dòng)點(diǎn),且滿足SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.48 B.49 C.50 D.51【答案】B【解析】如圖,建立平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)取等號(hào).故選:B.例27.如圖,邊長(zhǎng)為2的等邊三角形的外接圓為圓SKIPIF1<0,SKIPIF1<0為圓SKIPIF1<0上任一點(diǎn),若SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.1【答案】A【解析】作BC的平行線與圓相交于點(diǎn)P,與直線AB相交于點(diǎn)E,與直線AC相交于點(diǎn)F,設(shè)SKIPIF1<0,則SKIPIF1<0,∵BC//EF,∴設(shè)SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0故選:A.例28.在SKIPIF1<0中,M為BC邊上任意一點(diǎn),N為線段AM上任意一點(diǎn),若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由題意,設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,從而有SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0(SKIPIF1<0,SKIPIF1<0),所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線,所以SKIPIF1<0,即SKIPIF1<0.綜上,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.例29.如圖,已知點(diǎn)SKIPIF1<0在由射線SKIPIF1<0、線段SKIPIF1<0,線段SKIPIF1<0的延長(zhǎng)線所圍成的平面區(qū)域內(nèi)(包括邊界),且SKIPIF1<0與SKIPIF1<0平行,若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】∵SKIPIF1<0,SKIPIF1<0,由向量加法的平行四邊形法則,SKIPIF1<0為平行四邊形的對(duì)角線,該四邊形應(yīng)是以SKIPIF1<0與SKIPIF1<0的反向延長(zhǎng)線為兩鄰邊,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),要使SKIPIF1<0點(diǎn)落在指定區(qū)域內(nèi),即SKIPIF1<0點(diǎn)應(yīng)落在SKIPIF1<0上,SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.核心考點(diǎn)六:極化恒等式【規(guī)律方法】極化恒等式(1)平行四邊形平行四邊形對(duì)角線的平方和等于四邊的平方和:SKIPIF1<0證明:不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0①SKIPIF1<0②①②兩式相加得:SKIPIF1<0(2)極化恒等式:上面兩式相減,得:SKIPIF1<0————極化恒等式①平行四邊形模式:SKIPIF1<0幾何意義:向量的數(shù)量積可以表示為以這組向量為鄰邊的平行四邊形的“和對(duì)角線”與“差對(duì)角線”平方差的SKIPIF1<0.②三角形模式:SKIPIF1<0(M為BD的中點(diǎn))AABCM【典型例題】例30.邊長(zhǎng)為SKIPIF1<0的正方形內(nèi)有一內(nèi)切圓,SKIPIF1<0是內(nèi)切圓的一條弦,點(diǎn)SKIPIF1<0為正方形四條邊上的動(dòng)點(diǎn),當(dāng)弦SKIPIF1<0的長(zhǎng)度最大時(shí),SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【解析】如下圖所示:設(shè)正方形SKIPIF1<0的內(nèi)切圓為圓SKIPIF1<0,當(dāng)弦SKIPIF1<0的長(zhǎng)度最大時(shí),SKIPIF1<0為圓SKIPIF1<0的一條直徑,SKIPIF1<0,當(dāng)SKIPIF1<0為正方形SKIPIF1<0的某邊的中點(diǎn)時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0與正方形SKIPIF1<0的頂點(diǎn)重合時(shí),SKIPIF1<0,即SKIPIF1<0,因此,SKIPIF1<0.故答案為:SKIPIF1<0.例31.如圖直角梯形ABCD中,EF是CD邊上長(zhǎng)為6的可移動(dòng)的線段,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為________________.
【答案】SKIPIF1<0【解析】在SKIPIF1<0上取一點(diǎn)SKIPIF1<0,使得SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,如圖所示:則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,此時(shí)SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0與SKIPIF1<0重合時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0重合時(shí),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0例32.設(shè)三角形ABC,P0是邊AB上的一定點(diǎn),滿足P0B=SKIPIF1<0AB,且對(duì)于邊AB上任一點(diǎn)P,恒有SKIPIF1<0,則三角形ABC形狀為___________.【答案】等腰三角形【解析】取BC的中點(diǎn)D,連接PD,P0D,如圖所示:SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,設(shè)O為AB的中點(diǎn),SKIPIF1<0即三角形ABC為以C為頂角的等腰三角形.故答案為:等腰三角形.例33.已知直線SKIPIF1<0與圓SKIPIF1<0相切于點(diǎn)SKIPIF1<0,設(shè)直線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0為圓SKIPIF1<0上的動(dòng)點(diǎn),則SKIPIF1<0的最大值為______.【答案】SKIPIF1<0【解析】圓SKIPIF1<0的圓心的為SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與圓SKIPIF1<0相切于點(diǎn)SKIPIF1<0則SKIPIF1<0所以SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以直線方程為SKIPIF1<0,圓的方程為SKIPIF1<0,所以SKIPIF1<0,SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版房地產(chǎn)買賣合同模板
- 2024年港口疏浚及堤壩修建合同3篇
- 勞動(dòng)合同書電子版
- 水甲苯精餾塔課程設(shè)計(jì)
- 插班課程設(shè)計(jì)案例分析
- 管道課程設(shè)計(jì)小結(jié)
- 航空物流課程設(shè)計(jì)
- 航天研學(xué)課程設(shè)計(jì)
- 烘焙網(wǎng)絡(luò)營(yíng)銷課程設(shè)計(jì)
- 機(jī)械小車課程設(shè)計(jì)
- 【發(fā)動(dòng)機(jī)曲軸數(shù)控加工工藝過程卡片的設(shè)計(jì)7800字(論文)】
- 中藥破壁飲片文稿專家講座
- 2025年高考語文備考之名著閱讀《鄉(xiāng)土中國(guó)》重要概念解釋一覽表
- JG197-2006 預(yù)應(yīng)力混凝土空心方樁
- 醫(yī)院護(hù)理培訓(xùn)課件:《安全注射》
- 變、配電室門禁管理制度
- 11304+《管理案例分析》紙考2023.12
- 《淺談跳繩體育游戲的實(shí)踐研究》 論文
- 《勇敢面對(duì)挫折和困難》參考課件
- 小學(xué)體育期末檢測(cè)方案
- 2023-2024學(xué)年福建省莆田市荔城區(qū)中山中學(xué)、九中聯(lián)考九年級(jí)(上)期末數(shù)學(xué)試卷
評(píng)論
0/150
提交評(píng)論