版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
南昌三中2023—2023學年度下學期5月考高一數(shù)學試卷命題:吳歡審題:周平選擇題1、不等式的解集為()A.B.C.D.2.已知{an}是遞增數(shù)列,且對任意n∈N*都有an=n2+λn恒成立,則實數(shù)λ的取值范圍是()A.(-eq\f(7,2),+∞)B.(0,+∞)C.[-2,+∞)D.(-3,+∞)3.在△ABC中,若sin2A+sin2B<sin2C,則△ABC的形狀是()A.鈍角三角形B.直角三角形C.銳角三角形D.不能確定4.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12.設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有A.a(chǎn)>b>cB.b>c>aC.c>a>bD.c>b>a5、已知不等式解集為,則a+b=A.-5B.5C.-1D.1B6.在△ABC中,角A,B,C的對邊分別為a,b,c,若a=eq\r(3),b=eq\r(2),B=45°,則A=()A.30°B.30°或105°C.60°D.60°或120°7、C8.設(shè)有一個直線回歸方程為,則變量增加一個單位時A.平均增加個單位B.平均增加2個單位C.平均減少個單位D.平均減少2個單位9.若x>0,y>0且,則xy有 () A.最大值64 B.最小值 C.最小值 D.最小值6410.某人從湖里打了一網(wǎng)魚,共m條,做上記號再放入湖中,數(shù)日后又打了一網(wǎng)共n條,其中做記號的k條,估計湖中有魚()條A、B、C、D、不確定11.在△ABC中,已知taneq\f(A+B,2)=sinC,給出以下四個結(jié)論:①eq\f(tanA,tanB)=1;②1<sinA+sinB≤eq\r(2);③sin2A+cos2B=1;④cos2A+cos2B=sin2C.其中一定正確的是()A.①③B.②③C.①④D.②④12.已知函數(shù)f(x)=,把函數(shù)g(x)=f(x)-x的零點按從小到大的順序排列成一個數(shù)列,則該數(shù)列的通項公式為() A.B.C. D.二、填空題13.設(shè)a>b>c,且eq\f(1,a-b)+eq\f(1,b-c)≥eq\f(m,a-c)恒成立,則m的取值范圍是________.14.一個總體的60個個體的編號為0,1,2,…,59,現(xiàn)要從中抽取一個容量為10的樣本,請根據(jù)編號按被6除余3的方法,取足樣本,則抽取的樣本號碼是.15.已知數(shù)列{an}的通項公式為an=2n(n∈N*),把數(shù)列{an}的各項排列成如圖所示的三角形數(shù)陣:22223242526272829210……記M(s,t)表示該數(shù)陣中第s行的第t個數(shù),則M(11,2)對應的數(shù)是________(用2n的形式表示,n∈N).16.下列命題中:①函數(shù)的最小值是:②在△ABC中,若,則△ABC是等腰或直角三角形;③如果正實數(shù),a,b,c滿足a+b>c,則;其中正確的命題是解答題17.在中,已知.(1)求的大??;(2)設(shè)角的對邊依次為,若,且是銳角三角形,求的取值范圍;18.“你低碳了嗎?”這是某市為倡導建設(shè)節(jié)約型社會而發(fā)布的公益廣告里的一句話.活動組織者為了了解這則廣告的宣傳效果,隨機抽取了120名年齡在[10,20),[20,30),…,[50,60)的市民進行問卷調(diào)查,由此得到的樣本的頻率分布直方圖如圖所示.(1)根據(jù)直方圖填寫右面頻率分布統(tǒng)計表;(2)根據(jù)直方圖,試估計受訪市民年齡的中位數(shù)(保留整數(shù));(3)按分層抽樣的方法在受訪市民中抽取名市民作為本次活動的獲獎者,若在[10,20)的年齡組中隨機抽取了6人,則的值為多少?19.解關(guān)于x的不等式(R).20.已知單調(diào)遞增的等比數(shù)列滿足且是的等差中項,(1)求數(shù)列的通項公式;(2)記,求使成立的正整數(shù)n的最小值。21.某國際化妝品生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2023年英國倫敦奧運會期間進行一系列促銷活動,經(jīng)過市場調(diào)查和測算,化妝品的年銷量x萬件與年促銷費t萬元之間滿足3-x與t+1成反比例,如果不搞促銷活動,化妝品的年銷量只能是1萬件,已知2023年生產(chǎn)化妝品的設(shè)備折舊、維修等固定費用為3萬元,每生產(chǎn)1萬件化妝品需再投入32萬元的生產(chǎn)費用,若將每件化妝品的售價定為其生產(chǎn)成本的150%與平均每件促銷費的一半之和,則當年生產(chǎn)的化妝品正好能銷完.(1)將2023年的利潤y(萬元)表示為促銷費t(萬元)的函數(shù).(2)該企業(yè)2023年的促銷費投入多少萬元時,企業(yè)的年利潤最大?(注:利潤=銷售收入-生產(chǎn)成本-促銷費,生產(chǎn)成本=固定費用+生產(chǎn)費用)22.已知有窮數(shù)列共有2項(整數(shù)),首項。設(shè)該數(shù)列的前n項和為,且,其中常數(shù)。(1)求證:數(shù)列{an}是等比數(shù)列;(2)若,數(shù)列滿足,求數(shù)列的通項公式。(3)若(2)中的數(shù)列滿足不等式,求K的值
高一數(shù)學答案選擇題1、不等式的解集為()A.B.C.D.A2.已知{an}是遞增數(shù)列,且對任意n∈N*都有an=n2+λn恒成立,則實數(shù)λ的取值范圍是()A.(-eq\f(7,2),+∞)B.(0,+∞)C.[-2,+∞)D.(-3,+∞)[答案]C[解析]an=n2+λn=(n+eq\f(λ,2))2-eq\f(λ2,4),∵對任意n∈N*,an+1>an,∴-eq\f(λ,2)≤1,∴λ≥-2,故選C.3.在△ABC中,若sin2A+sin2B<sin2C,則△ABC的形狀是()A.鈍角三角形B.直角三角形C.銳角三角形D.不能確定解析:先由正弦定理將角關(guān)系化為邊的關(guān)系得:a2+b2<c2,再由余弦定理可求得角C的余弦值為負,所以角C為鈍角.故選A.答案:A6.答案:B4.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12.設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有A.a(chǎn)>b>cB.b>c>aC.c>a>bD.c>b>aD5、已知不等式解集為,則a+b=A.-5B.5C.-1D.1B6.在△ABC中,角A,B,C的對邊分別為a,b,c,若a=eq\r(3),b=eq\r(2),B=45°,則A=()A.30°B.30°或105°C.60°D.60°或120°8.答案:D7、D8.設(shè)有一個直線回歸方程為,則變量增加一個單位時A.平均增加個單位B.平均增加2個單位C.平均減少個單位D.平均減少2個單位C9.若x>0,y>0且,則xy有 () A.最大值64 B.最小值 C.最小值 D.最小值6410.某人從湖里打了一網(wǎng)魚,共m條,做上記號再放入湖中,數(shù)日后又打了一網(wǎng)共n條,其中做記號的k條,估計湖中有魚()條A、B、C、D、不確定C11.在△ABC中,已知taneq\f(A+B,2)=sinC,給出以下四個結(jié)論:①eq\f(tanA,tanB)=1;②1<sinA+sinB≤eq\r(2);③sin2A+cos2B=1;④cos2A+cos2B=sin2C.其中一定正確的是()A.①③B.②③C.①④D.②④答案D解析依題意,taneq\f(A+B,2)=eq\f(sin\f(A+B,2),cos\f(A+B,2))=eq\f(2sin\f(A+B,2)cos\f(A+B,2),2cos2\f(A+B,2))=eq\f(sinA+B,1+cosA+B)=eq\f(sinC,1+cosA+B)=sinC.∵sinC≠0,∴1+cos(A+B)=1,cos(A+B)=0.∵0<A+B<π,∴A+B=eq\f(π,2),即△ABC是以角C為直角的直角三角形.對于①,由eq\f(tanA,tanB)=1,得tanA=tanB,即A=B,不一定成立,故①不正確;對于②,∵A+B=eq\f(π,2),∴sinA+sinB=sinA+cosA=eq\r(2)sin(A+eq\f(π,4)),∴1<sinA+sinB≤eq\r(2),故②正確;對于③,∵A+B=eq\f(π,2),∴sin2A+cos2B=sin2A+sin2A=2sin2A,其值不確定,故③不正確;對于④,∵A+B=eq\f(π,2),∴cos2A+cos2B=cos2A+sin2A=1=sin2C,故④正確.12.已知函數(shù)f(x)=,把函數(shù)g(x)=f(x)-x的零點按從小到大的順序排列成一個數(shù)列,則該數(shù)列的通項公式為() A.B.C. D.【答案】B若0<x≤1,則﹣1<x﹣1<0,得f(x)=f(x﹣1)+1=2x﹣1,若1<x≤2,則0<x﹣1≤1,得f(x)=f(x﹣1)+1=2x﹣2+1若2<x≤3,則1<x﹣1≤2,得f(x)=f(x﹣1)+1=2x﹣3+2若3<x≤4,則2<x﹣1<3,得f(x)=f(x﹣1)+1=2x﹣4+3以此類推,若n<x≤n+1(其中n∈N),則f(x)=f(x﹣1)+1=2x﹣n﹣1+n,下面分析函數(shù)f(x)=2x的圖象與直線y=x+1的交點,很顯然,它們有兩個交點(0,1)和(1,2),由于指數(shù)函數(shù)f(x)=2x為增函數(shù)且圖象下凸,故它們只有這兩個交點.然后①將函數(shù)f(x)=2x和y=x+1的圖象同時向下平移一個單位即得到函數(shù)f(x)=2x﹣1和y=x的圖象,取x≤0的部分,可見它們有且僅有一個交點(0,0).即當x≤0時,方程f(x)﹣x=0有且僅有一個根x=0.②取①中函數(shù)f(x)=2x﹣1和y=x圖象﹣1<x≤0的部分,再同時向上和向右各平移一個單位,即得f(x)=2x﹣1和y=x在0<x≤1上的圖象,顯然,此時它們?nèi)匀恢挥幸粋€交點(1,1).即當0<x≤1時,方程f(x)﹣x=0有且僅有一個根x=1.③?、谥泻瘮?shù)f(x)=2x﹣1和y=x在0<x≤1上的圖象,繼續(xù)按照上述步驟進行,即得到f(x)=2x﹣2+1和y=x在1<x≤2上的圖象,顯然,此時它們?nèi)匀恢挥幸粋€交點(2,2).即當1<x≤2時,方程f(x)﹣x=0有且僅有一個根x=2.④以此類推,函數(shù)y=f(x)與y=x在(2,3],(3,4],(n,n+1]上的交點依次(3,3),(4,4),(n+1,n+1).即方程f(x)﹣x=0在(2,3],(3,4],(n,n+1]上的根依次為3,4,n+1.綜上所述方程f(x)﹣x=0的根按從小到大的順序排列所得數(shù)列為0.,1,2,3,4,其通項公式為,選B.二、填空題13.設(shè)a>b>c,且eq\f(1,a-b)+eq\f(1,b-c)≥eq\f(m,a-c)恒成立,則m的取值范圍是________.【答案】m≤4【解析】∵a>b>c,∴a-b>0,b-c>0,a-c>0,又(a-c)(eq\f(1,a-b)+eq\f(1,b-c))=[(a-b)+(b-c)]×(eq\f(1,a-b)+eq\f(1,b-c))≥2·eq\r(a-bb-c)·2eq\r(\f(1,a-b)·\f(1,b-c))=4.∴m≤4.14.一個總體的60個個體的編號為0,1,2,…,59,現(xiàn)要從中抽取一個容量為10的樣本,請根據(jù)編號按被6除余3的方法,取足樣本,則抽取的樣本號碼是.3,9,15,21,27,33,39,45,51,5715.已知數(shù)列{an}的通項公式為an=2n(n∈N*),把數(shù)列{an}的各項排列成如圖所示的三角形數(shù)陣:22223242526272829210……記M(s,t)表示該數(shù)陣中第s行的第t個數(shù),則M(11,2)對應的數(shù)是________(用2n的形式表示,n∈N).[答案]257[解析]由數(shù)陣的排列規(guī)律知,第m行的最后一個數(shù)是數(shù)列{an}的第1+2+3+…+m=eq\f(mm+1,2)項,且該行有m項,由此可知第11行的第2個數(shù)是數(shù)列{an}的第eq\f(10×11,2)+2=57項,對應的數(shù)是257.16.下列命題中:①函數(shù)的最小值是:②在△ABC中,若,則△ABC是等腰或直角三角形;③如果正實數(shù),a,b,c滿足a+b>c,則;其中正確的命題是解答題17.在中,已知.(1)求的大??;(2)設(shè)角的對邊依次為,若,且是銳角三角形,求的取值范圍;解:(1)依題意:,即,又,,;(2)由三角形是銳角三角形可得即,由正弦定理得,,,,,,,即.18.“你低碳了嗎?”這是某市為倡導建設(shè)節(jié)約型社會而發(fā)布的公益廣告里的一句話.活動組織者為了了解這則廣告的宣傳效果,隨機抽取了120名年齡在[10,20),[20,30),…,[50,60)的市民進行問卷調(diào)查,由此得到的樣本的頻率分布直方圖如圖所示.(1)根據(jù)直方圖填寫右面頻率分布統(tǒng)計表;(2)根據(jù)直方圖,試估計受訪市民年齡的中位數(shù)(保留整數(shù));(3)按分層抽樣的方法在受訪市民中抽取名市民作為本次活動的獲獎者,若在[10,20)的年齡組中隨機抽取了6人,則的值為多少?解:(1)(2)由已知得受訪市民年齡的中位數(shù)為(歲);(3)由,解得.19.解關(guān)于x的不等式(R).解:(x-)(x-)<0(1)若=0則==0,不等式變?yōu)?x2<0,解集為φ;(2)若=1則==1不等式變?yōu)?,解集為φ;(3)當0<<1時,>故解集為{x|<x<};(4)當<0或>1時,>故解集為{x|<x<};綜上得:當=0或=1時解集為φ;當0<<1時,解集為{x|<x<};當<0或>1時,解集為{x|<x<};20(1)(2),n的最小值為521.某國際化妝品生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2023年英國倫敦奧運會期間進行一系列促銷活動,經(jīng)過市場調(diào)查和測算,化妝品的年銷量x萬件與年促銷費t萬元之間滿足3-x與t+1成反比例,如果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 15561-2024數(shù)字指示軌道衡
- 農(nóng)業(yè)副產(chǎn)品高值化利用趨勢
- 高一化學教案:專題第二單元第一課時化學反應中的熱量變化(一)
- 2024高中化學第四章生命中的基礎(chǔ)有機化學物質(zhì)1油脂課時作業(yè)含解析新人教版選修5
- 2024高中地理課時作業(yè)8區(qū)域工業(yè)化與城市化-以我國珠江三角洲地區(qū)為例含解析新人教版必修3
- 2024高中語文第1單元論語蚜第1課天下有道丘不與易也練習含解析新人教版選修先秦諸子蚜
- 2024高中語文第五單元散而不亂氣脈中貫文與可筼筜谷偃竹記訓練含解析新人教版選修中國古代詩歌散文欣賞
- 2024高中語文精讀課文一第2課3魯迅:深刻與偉大的另一面是平和三課堂練習含解析新人教版選修中外傳記蚜
- 2024高考地理一輪復習第七單元自然環(huán)境對人類活動的影響練習含解析
- 2025新人教版英語七年級下不規(guī)則動詞表
- 2025新北師大版英語七年級下單詞表
- 《智慧城市概述》課件
- 2024年北京市家庭教育需求及發(fā)展趨勢白皮書
- GB/T 45089-20240~3歲嬰幼兒居家照護服務規(guī)范
- 中建道路排水工程施工方案
- 拆機移機合同范例
- 智能停車充電一體化解決方案
- 化學驗室安全培訓
- 天書奇譚美術(shù)課件
- GB/T 18916.15-2024工業(yè)用水定額第15部分:白酒
- 部編四年級道德與法治下冊全冊教案(含反思)
評論
0/150
提交評論