版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四、二次曲面第四單元向量代數(shù)與空間解析幾何一、曲面方程的概念二、旋轉(zhuǎn)曲面
三、柱面§4.2曲面與曲線方程五、空間曲線的一般方程六、空間曲線的參數(shù)方程七、空間曲線在坐標(biāo)面上的投影一、曲面方程的概念求到兩定點(diǎn)A(1,2,3)
和B(2,-1,4)等距離的點(diǎn)的化簡(jiǎn)得即說(shuō)明:動(dòng)點(diǎn)軌跡為線段
AB的垂直平分面.引例:顯然在此平面上的點(diǎn)的坐標(biāo)都滿足此方程,不在此平面上的點(diǎn)的坐標(biāo)不滿足此方程.解:設(shè)軌跡上的動(dòng)點(diǎn)為軌跡方程.
定義1.如果曲面
S
與方程
F(x,y,z)=0有下述關(guān)系:(1)曲面
S上的任意點(diǎn)的坐標(biāo)都滿足此方程則F(x,y,z)=0
叫做曲面
S
的方程,曲面S叫做方程F(x,y,z)=0的圖形.兩個(gè)基本問(wèn)題:(1)已知一曲面作為點(diǎn)的幾何軌跡時(shí),(2)不在曲面S上的點(diǎn)的坐標(biāo)不滿足此方程求曲面方程.(2)已知方程時(shí),研究它所表示的幾何形狀(必要時(shí)需作圖).故所求方程為例1.
求動(dòng)點(diǎn)到定點(diǎn)方程.特別,當(dāng)M0在原點(diǎn)時(shí),球面方程為解:
設(shè)軌跡上動(dòng)點(diǎn)為即依題意距離為
R
的軌跡表示上(下)球面.例2.
研究方程解:
配方得可見(jiàn)此方程表示一個(gè)球面說(shuō)明:如下形式的三元二次方程
(A≠0)都可通過(guò)配方研究它的圖形.其圖形可能是的曲面.表示怎樣半徑為球心為一個(gè)球面,或點(diǎn),或虛軌跡.定義2.一條平面曲線二、旋轉(zhuǎn)曲面
繞其平面上一條定直線旋轉(zhuǎn)一周所形成的曲面叫做旋轉(zhuǎn)曲面.該定直線稱為旋轉(zhuǎn)軸.例如:建立yOz面上曲線C
繞
z
軸旋轉(zhuǎn)所成曲面的方程:故旋轉(zhuǎn)曲面方程為當(dāng)繞
z軸旋轉(zhuǎn)時(shí),若點(diǎn)給定yOz
面上曲線
C:則有則有該點(diǎn)轉(zhuǎn)到思考:當(dāng)曲線C繞y軸旋轉(zhuǎn)時(shí),方程如何?例3.試建立頂點(diǎn)在原點(diǎn),旋轉(zhuǎn)軸為z
軸,半頂角為的圓錐面方程.解:在yOz面上直線L的方程為繞z
軸旋轉(zhuǎn)時(shí),圓錐面的方程為兩邊平方例4.
求坐標(biāo)面xOz
上的雙曲線分別繞
x軸和
z
軸旋轉(zhuǎn)一周所生成的旋轉(zhuǎn)曲面方程.解:繞
x
軸旋轉(zhuǎn)繞
z
軸旋轉(zhuǎn)這兩種曲面都叫做旋轉(zhuǎn)雙曲面.所成曲面方程為所成曲面方程為三、柱面引例.
分析方程表示怎樣的曲面.的坐標(biāo)也滿足方程解:在
xOy面上,表示圓C,沿圓周C平行于
z軸的一切直線所形成的曲面稱為圓故在空間過(guò)此點(diǎn)作柱面.對(duì)任意
z,平行
z
軸的直線
l,表示圓柱面在圓C上任取一點(diǎn)其上所有點(diǎn)的坐標(biāo)都滿足此方程,定義3.平行定直線并沿定曲線C
移動(dòng)的直線l形成的軌跡叫做柱面.表示拋物柱面,母線平行于
z
軸;準(zhǔn)線為xOy
面上的拋物線.
z
軸的橢圓柱面.z
軸的平面.表示母線平行于(且z
軸在平面上)表示母線平行于C
叫做準(zhǔn)線,l
叫做母線.一般地,在三維空間柱面,柱面,平行于x
軸;平行于
y
軸;平行于
z
軸;準(zhǔn)線xOz
面上的曲線l3.母線柱面,準(zhǔn)線
xOy
面上的曲線l1.母線準(zhǔn)線
yOz面上的曲線l2.母線四、二次曲面三元二次方程適當(dāng)選取直角坐標(biāo)系可得它們的標(biāo)準(zhǔn)方程,下面僅就幾種常見(jiàn)標(biāo)準(zhǔn)型的特點(diǎn)進(jìn)行介紹.研究二次曲面特性的基本方法:截痕法其基本類型有:橢球面、拋物面、雙曲面、錐面的圖形統(tǒng)稱為二次曲面.(二次項(xiàng)系數(shù)不全為0)1.橢球面(1)范圍:(2)與坐標(biāo)面的交線:橢圓與的交線為橢圓:(4)當(dāng)a=b
時(shí)為旋轉(zhuǎn)橢球面;同樣的截痕及也為橢圓.當(dāng)a=b=c
時(shí)為球面.(3)截痕:為正數(shù))2.拋物面(1)橢圓拋物面(p,q
同號(hào))(2)雙曲拋物面(鞍形曲面)(p,q同號(hào))特別,當(dāng)p=q時(shí)為繞
z軸的旋轉(zhuǎn)拋物面.3.雙曲面(1)單葉雙曲面橢圓.時(shí),截痕為(實(shí)軸平行于x
軸;虛軸平行于z軸)平面上的截痕情況:雙曲線:虛軸平行于x軸)時(shí),截痕為時(shí),截痕為(實(shí)軸平行于z
軸;相交直線:雙曲線:(2)雙葉雙曲面雙曲線橢圓注意單葉雙曲面與雙葉雙曲面的區(qū)別:雙曲線單葉雙曲面雙葉雙曲面P18圖形4.橢圓錐面橢圓在平面x=0或y=0上的截痕為過(guò)原點(diǎn)的兩直線.可以證明,橢圓①上任一點(diǎn)與原點(diǎn)的連線均在曲面上.①(橢圓錐面也可由圓錐面經(jīng)x
或y方向的伸縮變換得到)五、空間曲線的一般方程空間曲線可視為兩曲面的交線,其一般方程為方程組例如,方程組表示圓柱面與平面的交線
C.C又如,方程組表示上半球面與圓柱面的交線C.六、空間曲線的參數(shù)方程將曲線C上的動(dòng)點(diǎn)坐標(biāo)
x,y,z表示成參數(shù)
t
的函數(shù):稱它為空間曲線的參數(shù)方程.例如,圓柱螺旋線的參數(shù)方程為上升高度,稱為螺距
.例5.將下列曲線化為參數(shù)方程表示:解:(1)根據(jù)第一方程引入?yún)?shù),(2)將第二方程變形為故所求為得所求為例6.求空間曲線:繞z
軸旋轉(zhuǎn)時(shí)的旋轉(zhuǎn)曲面方程.解:點(diǎn)M1繞
z
軸旋轉(zhuǎn),轉(zhuǎn)過(guò)角度后到點(diǎn)則這就是旋轉(zhuǎn)曲面滿足的參數(shù)方程.例如,
直線繞z
軸旋轉(zhuǎn)所得旋轉(zhuǎn)曲面方程為消去t
和
,得旋轉(zhuǎn)曲面方程為繞z
軸旋轉(zhuǎn)所得旋轉(zhuǎn)曲面(即球面)方程為又如,
xOz
面上的半圓周說(shuō)明:
一般曲面的參數(shù)方程含兩個(gè)參數(shù),形如七、空間曲線在坐標(biāo)面上的投影設(shè)空間曲線C的一般方程為消去
z
得投影柱面則C在xOy面上的投影曲線C′為消去x得C在yOz
面上的投影曲線方程消去y得C在zOx面上的投影曲線方程例如,在xOy面上的投影曲線方程為又如,所圍的立體在xOy
面上的投影區(qū)域?yàn)?上半球面和錐面在xOy面上的投影曲線二者交線所圍圓域:二者交線在xOy面上的投影曲線所圍之域.內(nèi)容小結(jié)1.
空間曲面三元方程
球面
旋轉(zhuǎn)曲面如,曲線繞z
軸的旋轉(zhuǎn)曲面:
柱面如,曲面表示母線平行z
軸的柱面.又如,橢圓
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 石材供貨合同協(xié)議范本
- 2025技術(shù)轉(zhuǎn)讓合同樣本
- 2025委托代征代建合同書(shū)
- 二零二五版二手房過(guò)戶房屋查驗(yàn)與驗(yàn)收服務(wù)協(xié)議2篇
- 二零二五年度高空作業(yè)架子工安全防護(hù)責(zé)任協(xié)議3篇
- 2025-2030年(全新版)中國(guó)聲學(xué)材料行業(yè)發(fā)展趨勢(shì)展望與投資策略分析報(bào)告
- 2025-2030年中國(guó)鼓式剎車片行業(yè)規(guī)模分析及發(fā)展建議研究報(bào)告
- 2025-2030年中國(guó)重質(zhì)純堿行業(yè)發(fā)展現(xiàn)狀及前景趨勢(shì)分析報(bào)告
- 2025-2030年中國(guó)退熱貼行業(yè)前景展望及未來(lái)投資規(guī)劃研究報(bào)告新版
- 2025-2030年中國(guó)豆醬(大醬)市場(chǎng)運(yùn)行動(dòng)態(tài)分析與營(yíng)銷策略研究報(bào)告
- 蘇少版七年級(jí)美術(shù)下冊(cè) 全冊(cè)
- 民航概論5套模擬試卷考試題帶答案
- 2024屆中國(guó)電建地產(chǎn)校園招聘網(wǎng)申平臺(tái)高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- COCA20000詞匯音標(biāo)版表格
- 滬教版七年級(jí)數(shù)學(xué)上冊(cè)專題06圖形的運(yùn)動(dòng)(原卷版+解析)
- JTG-T-F20-2015公路路面基層施工技術(shù)細(xì)則
- 光伏發(fā)電站集中監(jiān)控系統(tǒng)通信及數(shù)據(jù)標(biāo)準(zhǔn)
- 建筑垃圾減排及資源化處置措施
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)附答案
- 中西方校服文化差異研究
- 2024年一級(jí)建造師考試思維導(dǎo)圖-市政
評(píng)論
0/150
提交評(píng)論