版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年云南國防工業(yè)職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實數(shù)解,求a的值.答案:設(shè)方程的實根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0
②由②得x0=3或-1,代入①得a=73或-3∴a=73或-32.已知f(x)=,a≠b,
求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時,∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時,要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.3.已知、分別是的外接圓和內(nèi)切圓;證明:過上的任意一點(diǎn),都可作一個三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長交于,則,,延長交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點(diǎn),連,則,,,所以,由于在角的平分線上,因此點(diǎn)是的內(nèi)心,(這是由于,,而,所以,點(diǎn)是的內(nèi)心).即弦與相切.4.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點(diǎn)D,則圖中共有直角三角形的個數(shù)是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.5.橢圓=1的焦點(diǎn)為F1,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)M在y軸上,那么點(diǎn)M的縱坐標(biāo)是()
A.±
B.±
C.±
D.±答案:A6.圓x2+y2=1在矩陣10012對應(yīng)的變換作用下的結(jié)果為______.答案:設(shè)P(x,y)是圓C:x2+y2=1上的任一點(diǎn),P1(x′,y′)是P(x,y)在矩陣A=10012對應(yīng)變換作用下新曲線上的對應(yīng)點(diǎn),則x′y′=10012xy=1x12y即x′=xy′=12y,所以x=x′y=2y′,將x=x′y=2y′代入x2+y2=1,得x2+4y2=1,(8分)故為:x2+4y2=1.7.l1,l2,l3是空間三條不同的直線,則下列命題正確的是[
]A.l1⊥l2,l2⊥l3l1∥l3
B.l1⊥l2,l2∥l3l1⊥l3
C.l1∥l2∥l3l1,l2,l3共面
D.l1,l2,l3共點(diǎn)l1,l2,l3共面答案:B8.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()
A.
B.
C.0
D.1答案:A9.巳知橢圓{xn}與{yn}的中心在坐標(biāo)原點(diǎn),長軸在x軸上,離心率為32,且G上一點(diǎn)到G的兩個焦點(diǎn)的距離之和為12,則橢圓G的方程為______.答案:由題設(shè)知e=32,2a=12,∴a=6,b=3,∴所求橢圓方程為x236+y29=1.:x236+y29=1.10.已知△ABC是邊長為2a的正三角形,那么它的斜二側(cè)所畫直觀圖△A′B′C′的面積為()
A.a(chǎn)2
B.a(chǎn)2
C.a(chǎn)2
D.a(chǎn)2答案:C11.在平面直角坐標(biāo)系中,點(diǎn)A(4,-2)按向量a=(-1,3)平移,得點(diǎn)A′的坐標(biāo)是()A.(5,-5)B.(3,1)C.(5,1)D.(3,-5)答案:設(shè)A′的坐標(biāo)為(x′,y′),則x′=4-1=3y′=-2+3=1,∴A′(3,1).故選B.12.已知P(x,y)是橢圓x24+y2=1上的點(diǎn),求M=x+2y的取值范圍.答案:∵x24+y2=1的參數(shù)方程是x=2cosθy=sinθ(θ是參數(shù))∴設(shè)P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)
(7分)∴M=x+2y的取值范圍是[-22,22].(10分)13.命題“12既是4的倍數(shù),又是3的倍數(shù)”的形式是()A.p∨qB.p∧qC.¬pD.簡單命題答案:命題“12既是4的倍數(shù),又是3的倍數(shù)”可轉(zhuǎn)化成“12是4的倍數(shù)且12是3的倍數(shù)”故是p且q的形式;故選B.14.函數(shù)f(x)=2|log2x|的圖象大致是()
A.
B.
C.
D.
答案:C15.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設(shè)圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.16.一個箱中原來裝有大小相同的
5
個球,其中
3
個紅球,2
個白球.規(guī)定:進(jìn)行一次操
作是指“從箱中隨機(jī)取出一個球,如果取出的是紅球,則把它放回箱中;如果取出的是白
球,則該球不放回,并另補(bǔ)一個紅球放到箱中.”
(1)求進(jìn)行第二次操作后,箱中紅球個數(shù)為
4
的概率;
(2)求進(jìn)行第二次操作后,箱中紅球個數(shù)的分布列和數(shù)學(xué)期望.答案:(1)設(shè)A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進(jìn)行第二次操作后,箱中紅球個數(shù)為
4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設(shè)進(jìn)行第二次操作后,箱中紅球個數(shù)為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進(jìn)行第二次操作后,箱中紅球個數(shù)X的分布列為:進(jìn)行第二次操作后,箱中紅球個數(shù)X的數(shù)學(xué)期望EX=3×925+4×1425+5×225=9325.17.在四面體O-ABC中,OA=a,OB=b,OC=c,D為BC的中點(diǎn),E為AD的中點(diǎn),則OE可表示為(用a,b、c表示).
()A.12a+14b+14cB.12a+13b-12cC.13a+14b+14cD.13a-14b+14c答案:OE=OA+12AD=OA+12×12(AB+AC)=OA+14×(OB-OA+OC-OA)PD.CD+BC.AD+CA.BD=12OA+14OB+14OC=12a+14b+14c.故選A.18.表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個隨機(jī)事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.19.節(jié)假日時,國人發(fā)手機(jī)短信問候親友已成為一種時尚,若小李的40名同事中,給其發(fā)短信問候的概率為1,0.8,0.5,0的人數(shù)分別是8,15,14,3(人),通常情況下,小李應(yīng)收到同事問候的信息條數(shù)為()
A.27
B.37
C.38
D.8答案:A20.利用計算機(jī)在區(qū)間(0,1)上產(chǎn)生兩個隨機(jī)數(shù)a和b,則方程有實根的概率為()
A.
B.
C.
D.1答案:A21.(幾何證明選講選做題)已知PA是⊙O的切線,切點(diǎn)為A,直線PO交⊙O于B、C兩點(diǎn),AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.22.在同一個坐標(biāo)系中畫出函數(shù)y=ax,y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是()
A.
B.
C.
D.
答案:D23.已知曲線C1,C2的極坐標(biāo)方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),則曲線C1與C2交點(diǎn)的極坐標(biāo)為______.答案:我們通過聯(lián)立解方程組ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即兩曲線的交點(diǎn)為(23,π6).故填:(23,π6).24.已知a,b
,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.25.直線x3+y4=1與x,y軸所圍成的三角形的周長等于()A.6B.12C.24D.60答案:直線x3+y4=1與兩坐標(biāo)軸交于A(3,0),B(0,4),∴AB=5,∴△AOB的周長為:OA+OB+AB=3+4+5=12,故選B.26.定義平面向量之間的一種運(yùn)算“⊙”如下:對任意的=(m,n),=(p,q)
,令⊙=mq-np,下面說法錯誤的序號是()
①若若a與共線,則⊙=0
②⊙=⊙a(bǔ)
③對任意的λ∈R,有(λ)⊙=λ(⊙)
④(⊙)2+(a)2=||2||2
A.②
B.①②
C.②④
D.③④答案:A27.栽培甲、乙兩種果樹,先要培育成苗,然后再進(jìn)行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為,.
(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;
(2)求恰好有一種果樹能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹至少有一種成苗的概率為;(2).恰好有一種果樹培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹成苗為事件,;分別記甲、乙兩種果樹苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹至少有一種成苗的概率為;(2)解法一:分別記兩種果樹培育成苗且移栽成活為事件,則,.恰好有一種果樹培育成苗且移栽成活的概率為.解法二:恰好有一種果樹栽培成活的概率為.28.
已知橢圓(θ為參數(shù))上的點(diǎn)P到它的兩個焦點(diǎn)F1、F2的距離之比,
且∠PF1F2=α(0<α<),則α的最大值為()
A.
B.
C.
D.答案:A29.已知2,4,2x,4y四個數(shù)的平均數(shù)是5而5,7,4x,6y四個數(shù)的平均數(shù)是9,則xy的值是______.答案:因為2,4,2x,4y四個數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關(guān)系式為x+2y=72x+3y=12解得x=3y=2故為6.30.已知的單調(diào)區(qū)間;
(2)若答案:(1)(2)證明略解析:(1)對已知函數(shù)進(jìn)行降次分項變形
,得,(2)首先證明任意事實上,而
.31.一支田徑隊有男運(yùn)動員112人,女運(yùn)動員84人,用分層抽樣的方法從全體男運(yùn)動員中抽出了32人,則應(yīng)該從女運(yùn)動員中抽出的人數(shù)為()
A.12
B.13
C.24
D.28答案:C32.若|x-4|+|x+5|>a對于x∈R均成立,則a的取值范圍為______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值為9.再由題意可得,當(dāng)a<9時,不等式對x∈R均成立.故為(-∞,9).33.在下列條件中,使M與不共線三點(diǎn)A、B、C,一定共面的是
[
]答案:C34.已知雙曲線的頂點(diǎn)到漸近線的距離為2,焦點(diǎn)到漸近線的距離為6,則該雙曲線的離心率為
______.答案:如圖,過雙曲線的頂點(diǎn)A、焦點(diǎn)F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為335.”m>n>0”是”方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓”的(
)
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件答案:C36.曲線與坐標(biāo)軸的交點(diǎn)是(
)A.B.C.D.答案:B解析:當(dāng)時,,而,即,得與軸的交點(diǎn)為;當(dāng)時,,而,即,得與軸的交點(diǎn)為37.三個數(shù)a=60.5,b=0.56,c=log0.56的大小順序為______.(按大到小順序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故為a>b>c.38.在數(shù)列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想數(shù)列{an}的通項公式(不必證明);(Ⅱ)證明:當(dāng)λ≠0時,數(shù)列{an}不是等比數(shù)列;(Ⅲ)當(dāng)λ=1時,試比較an與n2+1的大小,證明你的結(jié)論.答案:(Ⅰ)∵a1=2,∴a2=λa1+λ2+2(2-λ)=λ2+4,同理可得,a3=2λ3+8,a4=3λ4+16,猜想an=(n-1)λn+2n.(Ⅱ)假設(shè)數(shù)列{an}是等比數(shù)列,則a1,a2,a3也成等比數(shù)列,∴a22=a1?a3?(λ2+4)2=2(2λ3+8)?λ4-4λ3+8λ2=0,∵λ≠0,∴λ2-4λ+8=0,即(λ-2)2+4=0,但(λ-2)2+4>0,矛盾,∴數(shù)列{an}不是等比數(shù)列.(Ⅲ)∵λ=1,∴an=(n+1)+2n,∴an-(n2+1)=2n-(n2-n+2),∵當(dāng)n=1,2,3時,2n=n2-n+2,∴an=n2+1.當(dāng)n≥4時,猜想2n>n2-n+2,證明如下:當(dāng)n=4時,顯然2k>k2-4+2假設(shè)當(dāng)n=k≥4時,猜想成立,即2k>k2-k+2,則當(dāng)n=k+1時,2k+1=2?2k>2(k2-k+2),∵2(k2-k+2)-[(k+1)20-(k+1)+2]=(k-1)(k-2)>0∴2k+1>2(k2-k+2)>(k+1)2-(k+1)+2,∴當(dāng)n≥4時,猜想2n>n2-n+2成立,∴當(dāng)n≥4時,an>n2+1.39.在空間有三個向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.40.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點(diǎn),
(Ⅰ)求證:DM⊥EB;
(Ⅱ)設(shè)二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設(shè)平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22?12+02+
02=13,即cosβ=1341.(選修4-4:坐標(biāo)系與參數(shù)方程)
在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(3,5),求|PA|+|PB|.答案:(Ⅰ)∵圓C的方程為ρ=25sinθ.∴x2+y2-25y=0,即圓C的直角坐標(biāo)方程:x2+(y-5)2=5.(Ⅱ)(3-22t)2+(22t)2=5,即t2-32t+4=0,由于△=(32)2-4×4=2>0,故可設(shè)t1,t2是上述方程的兩實根,所以t1+t2=32t1t2=4,又直線l過點(diǎn)P(3,5),故|PA|+|PB|=|t1|+|t2|=t1+t2=3242.從橢圓
x2a2+y2b2=1(a>b>0)上一點(diǎn)P向x軸作垂線,垂足恰為左焦點(diǎn)F1,又點(diǎn)A是橢圓與x軸正半軸的交點(diǎn),點(diǎn)B是橢圓與y軸正半軸的交點(diǎn),且AB∥OP,|F1A|=10+5,求橢圓的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x軸∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴橢圓方程為x210+y25=1.43.已知點(diǎn)A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,α∈(0,π),則與的夾角為()
A.
B.
C.
D.答案:D44.用數(shù)字1,2,3,4,5組成的無重復(fù)數(shù)字的四位偶數(shù)的個數(shù)為()
A.8
B.24
C.48
D.120答案:C45.(1)用紅、黃、藍(lán)、白四種不同顏色的鮮花布置如圖一所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域用不同顏色鮮花,問共有多少種不同的擺放方案?
(2)用紅、黃、藍(lán)、白、橙五種不同顏色的鮮花布置如圖二所示的花圃,要求同一區(qū)域上用同一種顏色鮮花,相鄰區(qū)域使用不同顏色鮮花.
①求恰有兩個區(qū)域用紅色鮮花的概率;
②記花圃中紅色鮮花區(qū)域的塊數(shù)為S,求它的分布列及其數(shù)學(xué)期望E(S).
答案:(1)根據(jù)分步計數(shù)原理,擺放鮮花的不同方案有:4×3×2×2=48種(2)①設(shè)M表示事件“恰有兩個區(qū)域用紅色鮮花”,如圖二,當(dāng)區(qū)域A、D同色時,共有5×4×3×1×3=180種;當(dāng)區(qū)域A、D不同色時,共有5×4×3×2×2=240種;因此,所有基本事件總數(shù)為:180+240=420種.(由于只有A、D,B、E可能同色,故可按選用3色、4色、5色分類計算,求出基本事件總數(shù)為A53+2A51+A55=420種)它們是等可能的.又因為A、D為紅色時,共有4×3×3=36種;B、E為紅色時,共有4×3×3=36種;因此,事件M包含的基本事件有:36+36=72種.所以,P(M)=72420=635②隨機(jī)變量ξ的分布列為:ξ012P6352335635所以,E(ξ)=0×635+1×2335+2×635=146.一張紙上畫有一個半徑為R的圓O和圓內(nèi)一個定點(diǎn)A,且OA=a,折疊紙片,使圓周上某一點(diǎn)A′剛好與點(diǎn)A重合.這樣的每一種折法,都留下一條折痕.當(dāng)A′取遍圓周上所有點(diǎn)時,求所有折痕所在直線上點(diǎn)的集合.答案:對于⊙O上任意一點(diǎn)A′,連AA′,作AA′的垂直平分線MN,連OA′,交MN于點(diǎn)P,則OP+PA=OA′=R.由于點(diǎn)A在⊙O內(nèi),故OA=a<R.從而當(dāng)點(diǎn)A′取遍圓周上所有點(diǎn)時,點(diǎn)P的軌跡是以O(shè)、A為焦點(diǎn),OA=a為焦距,R(R>a)為長軸的橢圓C.而MN上任一異于P的點(diǎn)Q,都有OQ+QA=OQ+QA′>OA′,故點(diǎn)Q在橢圓C外,即折痕上所有的點(diǎn)都在橢圓C上及C外.反之,對于橢圓C上或外的一點(diǎn)S,以S為圓心,SA為半徑作圓,交⊙O于A′,則S在AA′的垂直平分線上,從而S在某條折痕上.最后證明所作⊙S與⊙O必相交.1°
當(dāng)S在⊙O外時,由于A在⊙O內(nèi),故⊙S與⊙O必相交;2°
當(dāng)S在⊙O內(nèi)時(例如在⊙O內(nèi),但在橢圓C外或其上的點(diǎn)S′),取過S′的半徑OD,則由點(diǎn)S′在橢圓C外,故OS′+S′A≥R(橢圓的長軸).即S′A≥S′D.于是D在⊙S′內(nèi)或上,即⊙S′與⊙O必有交點(diǎn).于是上述證明成立.綜上可知,折痕上的點(diǎn)的集合為橢圓C上及C外的所有點(diǎn)的集合.47.(幾何證明選講選選做題)如圖,AC是⊙O的直徑,B是⊙O上一點(diǎn),∠ABC的平分線與⊙O相交于.D已知BC=1,AB=3,則AD=______;過B、D分別作⊙O的切線,則這兩條切線的夾角θ=______.答案:∵AC是⊙O的直徑,B是⊙O上一點(diǎn)∴∠ABC=90°∵∠ABC的平分線與⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圓周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°設(shè)所作的兩切線交于點(diǎn)P,連接OB,OD,則可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴點(diǎn)ODPB共圓∴∠P+∠BOD=180°∴∠P=30°故為:2,30°48.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對事件:
①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;
②“取出兩只紅球和一只白球”與“取出3只紅球”;
③“取出3只紅球”與“取出的3只球中至少有一只白球”;
④“取出3只紅球”與“取出3只白球”.
其中是對立事件的有______(只填序號).答案:對于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時發(fā)生,而且它們的并事件是必然事件,故它們是對立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時發(fā)生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.故為③.49.用黃金分割法尋找最佳點(diǎn),試驗區(qū)間為[1000,2000],若第一個二個試點(diǎn)為好點(diǎn),則第三個試點(diǎn)應(yīng)選在(
)。答案:123650.△ABC所在平面內(nèi)點(diǎn)O、P,滿足OP=OA+λ(AB+12BC),λ∈[0,+∞),則點(diǎn)P的軌跡一定經(jīng)過△ABC的()A.重心B.垂心C.內(nèi)心D.外心答案:設(shè)BC的中點(diǎn)為D,則∵OP=OA+λ(AB+12BC),∴OP=OA+λAD∴AP=λAD∴AP∥AD∵AD是△ABC的中線∴點(diǎn)P的軌跡一定經(jīng)過△ABC的重心故選A.第2卷一.綜合題(共50題)1.如圖是一個實物圖形,則它的左視圖大致為()A.
B.
C.
D.
答案:∵左視圖是指由物體左邊向右做正投影得到的視圖,并且在左視圖中看到的線用實線,看不到的線用虛線,∴該幾何體的左視圖應(yīng)當(dāng)是包含一條從左上到右下的對角線的矩形,并且對角線在左視圖中為實線,故選D.2.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},則實數(shù)a的值為______.答案:根據(jù)題意,集合A={0,2,a2},B={1,a},且A∪B={0,1,2,4},則有a=4,或a=4,a=4時,A={0,2,16},B={1,4},A∪B={0,1,2,4,16},不合題意,舍去;a=2時,A={0,2,4},B={1,2},A∪B={0,1,2,4},符合;故a=2.3.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),則k的值為?
(2)若α∈N,又三點(diǎn)A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點(diǎn)為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點(diǎn)共線,說明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=24.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是
______,過這個圓外一點(diǎn)P(2,3)的該圓的切線方程是
______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個圓外一點(diǎn)P(2,3)的該圓的切線,當(dāng)切線斜率不存在時,顯然x=2符合題意;當(dāng)切線斜率存在時,設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=
1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.5.已知點(diǎn)P為y軸上的動點(diǎn),點(diǎn)M為x軸上的動點(diǎn),點(diǎn)F(1,0)為定點(diǎn),且滿足PN+12NM=0,PM?PF=0.
(Ⅰ)求動點(diǎn)N的軌跡E的方程;
(Ⅱ)過點(diǎn)F且斜率為k的直線l與曲線E交于兩點(diǎn)A,B,試判斷在x軸上是否存在點(diǎn)C,使得|CA|2+|CB|2=|AB|2成立,請說明理由.答案:(Ⅰ)設(shè)N(x,y),則由PN+12NM=0,得P為MN的中點(diǎn).∴P(0,y2),M(-x,0).∴PM=(-x,-y2),PF=(1,-y2).∴PM?PF=-x+y24=0,即y2=4x.∴動點(diǎn)N的軌跡E的方程y2=4x.(Ⅱ)設(shè)直線l的方程為y=k(x-1),由y=k(x-1)y2=4x,消去x得y2-4ky-4=0.設(shè)A(x1,y1),B(x2,y2),則
y1+y2=4k,y1y2=-4.假設(shè)存在點(diǎn)C(m,0)滿足條件,則CA=(x1-m,y1),CB=(x2-m,y2),∴CA?CB=x1x2-m(x1+x2)+m2+y1y2=(y1y24)2-m(y12+y224)+m2-4=-m4[(y1+y2)2-2y1y2]+m2-3=m2-m(4k2+2)-3.∵△=(4k2+2)2+12>0,∴關(guān)于m的方程m2-m(4k2+2)-3=0有解.∴假設(shè)成立,即在x軸上存在點(diǎn)C,使得|CA|2+|CB|2=|AB|2成立.6.如圖,AD是圓內(nèi)接三角形ABC的高,AE是圓的直徑,AB=6,AC=3,則AE×AD等于
______.答案:∵AE是直徑∴∠ABE=∠ADC=90°∵∠E=∠C∴△ABE∽△ADC∴ABAD=AEAC∴AE×AD=AB?AC=32故為32.7.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.8.如圖,F(xiàn)是定直線l外的一個定點(diǎn),C是l上的動點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點(diǎn),過A、B分別作l的垂線與圓C過F的切線相交于點(diǎn)P和點(diǎn)Q,則必在以F為焦點(diǎn),l為準(zhǔn)線的同一條拋物線上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線的方程;
(Ⅱ)對以上結(jié)論的反向思考可以得到另一個命題:“若過拋物線焦點(diǎn)F的直線與拋物線相交于P、Q兩點(diǎn),則以PQ為直徑的圓一定與拋物線的準(zhǔn)線l相切”請問:此命題是正確?試證明你的判斷;
(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應(yīng)的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據(jù))答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點(diǎn)為原點(diǎn),KF所在直線為x軸建立平面直角坐標(biāo)系如圖1,并設(shè)|KF|=p,則可得該拋物線的方程為
y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設(shè)PQ中點(diǎn)為M,P、Q、M在拋物線準(zhǔn)線l上的射影分別為A、B、D,∵PQ是拋物線過焦點(diǎn)F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M(jìn)是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點(diǎn)F的直線與橢圓交于P、Q兩點(diǎn),則以PQ為直徑的圓與橢圓相應(yīng)的準(zhǔn)線l相離”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準(zhǔn)線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點(diǎn)F的直線與雙曲線交于P、Q兩點(diǎn),則以PQ為直徑的圓與雙曲線相應(yīng)的準(zhǔn)線l相交”.此命題為真命題,證明如下:證明:設(shè)PQ中點(diǎn)為M,橢圓的離心率為e,則e>1,P、Q、M在相應(yīng)準(zhǔn)線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵M(jìn)D是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準(zhǔn)線l相交.9.點(diǎn)M(2,-3,1)關(guān)于坐標(biāo)原點(diǎn)對稱的點(diǎn)是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A10.探測某片森林知道,可采伐的木材有10萬立方米.設(shè)森林可采伐木材的年平均增長率為8%,則經(jīng)過______年,可采伐的木材增加到40萬立方米.答案:設(shè)經(jīng)過n年可采伐本材達(dá)到40萬立方米則有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即經(jīng)過19年,可采伐的木材增加到40萬立方米故為1911.已知|a|=1,|b|=2,向量a與b的夾角為60°,則|a+b|=______.答案:∵已知|a|=1,|b|=2,向量a與b的夾角為60°,∴a2=1,b2=4,a?b=1×2×cos60°=1,.∴|.a+b|2=a2+b2+2a?b=1+4+2=7,∴|.a+b|
=7,故為7.12.已知△ABC的頂點(diǎn)坐標(biāo)為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長為______.答案:D在BC上,且S△ABC=3S△ABD,∴D點(diǎn)為BC邊上的三等分點(diǎn)則D點(diǎn)分線段BC所成的比為12則易求出D點(diǎn)坐標(biāo)為:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故為:3213.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點(diǎn),則f(0)與f(1)()
A.均為正值
B.均為負(fù)值
C.一正一負(fù)
D.至少有一個等于0答案:D14.某?,F(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,學(xué)校學(xué)生會用分層抽樣的方法從這三個年級的學(xué)生中隨機(jī)抽取n名學(xué)生進(jìn)行問卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高三學(xué)生中抽取的人數(shù)應(yīng)為()
A.10
B.9
C.8
D.7答案:A15.下列程序表示的算法是輾轉(zhuǎn)相除法,請在空白處填上相應(yīng)語句:
(1)處填______;
(2)處填______.答案:∵程序表示的算法是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法,先求出m除以n的余數(shù),然后利用輾轉(zhuǎn)相除法,將n的值賦給m,將余數(shù)賦給n,一直算到余數(shù)為零時m的值即可,∴(1)處應(yīng)該為r=mMODn;(2)處應(yīng)該為r=0.故為r=mMODn;r=0.16.給出函數(shù)f(x)的一條性質(zhì):“存在常數(shù)M,使得|f(x)|≤M|x|對于定義域中的一切實數(shù)x均成立.”則下列函數(shù)中具有這條性質(zhì)的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠(yuǎn)成立故選D.17.函數(shù)數(shù)列{fn(x)}滿足:f1(x)=x1+x2(x>0),fn+1(x)=f1[fn(x)]
(1)求f2(x),f3(x);
(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論.答案:(1)f2(x)=f1(f1(x))=f1(x)1+f21(x)=x1+2x2f3(x)=f1(f2(x))=f2(x)1+f22(x)=x1+3x2(2)猜想:fn(x)=x1+nx2(n∈N*)下面用數(shù)學(xué)歸納法證明:①當(dāng)n=1時,f1(x)=x1+x22,已知,顯然成立②假設(shè)當(dāng)n=K(K∈N*)4時,猜想成立,即fk(x)=x1+kx2則當(dāng)n=K+1時,fk+1(x)=f1(fk(x))=fk(x)1+f2k(x)=x1+kx21+(x1+kx2)2=x1+(k+1)x2即對n=K+1時,猜想也成立.結(jié)合①②可知:猜想fn(x)=x1+nx2對一切n∈N*都成立.18.(參數(shù)方程與極坐標(biāo)選講)在極坐標(biāo)系中,圓C的極坐標(biāo)方程為:ρ2+2ρcosθ=0,點(diǎn)P的極坐標(biāo)為(2,π2),過點(diǎn)P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標(biāo)方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點(diǎn)P的極坐標(biāo)為(2,π2),化為直角坐標(biāo)為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.19.設(shè)F為拋物線y2=ax(a>0)的焦點(diǎn),點(diǎn)P在拋物線上,且其到y(tǒng)軸的距離與到點(diǎn)F的距離之比為1:2,則|PF|等于()
A.
B.a(chǎn)
C.
D.答案:D20.函數(shù)y=f(x)對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy.
(1)求f(0)的值;
(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達(dá)式并用數(shù)學(xué)歸納法證明你的結(jié)論;
(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數(shù)學(xué)歸納法證明之.①當(dāng)n=1時猜想成立.②假設(shè)n=k時猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時猜想也成立.對于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設(shè)n=k(k∈N*)時命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).21.已知回歸直線的斜率的估計值是1.23,樣本中心點(diǎn)為(4,5),若解釋變量的值為10,則預(yù)報變量的值約為()A.16.3B.17.3C.12.38D.2.03答案:設(shè)回歸方程為y=1.23x+b,∵樣本中心點(diǎn)為(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10時,y=12.38故選C.22.正方形ABCD中,AB=1,分別以A、C為圓心作兩個半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件______時,⊙A與⊙C有2個交點(diǎn)(
)
A.R+r>
B.R-r<<R+r
C.R-r>
D.0<R-r<答案:B23.已知正方形ABCD的邊長為1,=,=,=,則的模等于(
)
A.0
B.2+
C.
D.2答案:D24.下列圖形中不一定是平面圖形的是(
)
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B25.某自動化儀表公司組織結(jié)構(gòu)如圖所示,其中采購部的直接領(lǐng)導(dǎo)是()
A.副總經(jīng)理(甲)
B.副總經(jīng)理(乙)
C.總經(jīng)理
D.董事會
答案:B26.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機(jī)剔除的個體數(shù)分別為()
A.3,2
B.2,3
C.2,30
D.30,2答案:A27.如圖,AB是圓O的直徑,CD是圓O的弦,AB與CD交于E點(diǎn),且AE:EB=3:1、CE:ED=1:1,CD=83,則直徑AB的長為______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故為:1628.已知A(1,2),B(-3,b)兩點(diǎn)的距離等于42,則b=______.答案:∵A(1,2),B(-3,b)∴|AB|=(-3-1)2+(b-2)2=42,解之得b=6或-2故為:6或-229.某電廠冷卻塔的外形是如圖所示雙曲線的一部分繞其中軸(即雙曲線的虛軸)旋轉(zhuǎn)所成的曲面,其中A、A′是雙曲線的頂點(diǎn),C、C′是冷卻塔上口直徑的兩個端點(diǎn),B、B′是下底直徑的兩個端點(diǎn),已知AA′=14m,CC′=18m,BB′=22m,塔高20m.
(Ⅰ)建立坐標(biāo)系并寫出該雙曲線方程;
(Ⅱ)求冷卻塔的容積(精確到10m3,塔壁厚度不計,π取3.14).答案:(I)如圖建立直角坐標(biāo)系xOy,AA′在x軸上,AA′的中點(diǎn)為坐標(biāo)原點(diǎn)O,CC′與BB′平行于x軸.設(shè)雙曲線方程為x2a2-y2b2=1(a>0,b>0),則a=12AA′=7.又設(shè)B(11,y1),C(9,y2),因為點(diǎn)B、C在雙曲線上,所以有11272-y21b2=1,①9272-y22b2=1,②由題意知y2-y1=20.③由①、②、③得y1=-12,y2=8,b=72.故雙曲線方程為x249-y298=1;(II)由雙曲線方程得x2=12y2+49.設(shè)冷卻塔的容積為V(m3),則V=π∫y2y1x2dy=π∫8-12(12y2+49)dy=π(16y3+49y)|8-12,∴V≈4.25×103(m3).答:冷卻塔的容積為4.25×103(m3).30.(幾何證明選講選選做題)如圖,AC是⊙O的直徑,B是⊙O上一點(diǎn),∠ABC的平分線與⊙O相交于.D已知BC=1,AB=3,則AD=______;過B、D分別作⊙O的切線,則這兩條切線的夾角θ=______.答案:∵AC是⊙O的直徑,B是⊙O上一點(diǎn)∴∠ABC=90°∵∠ABC的平分線與⊙O相交于D,BC=1,AB=3∴∠C=60°,∠BAC=30°,∠ABD=∠CBD=45°由圓周角定理可知∠C=∠ADB=60°△ABD中,由正弦定理可得ABsin60°=ADsin45°即AD=3sin60°×sin45°=2∵∠BAD=30°+45°=75°∴∠BOD=2∠BAD=150°設(shè)所作的兩切線交于點(diǎn)P,連接OB,OD,則可得OB⊥PB,OD⊥PD即∠OBP=∠ODP=90°∴點(diǎn)ODPB共圓∴∠P+∠BOD=180°∴∠P=30°故為:2,30°31.已知直線l:ax+by=1(ab>0)經(jīng)過點(diǎn)P(1,4),則l在兩坐標(biāo)軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經(jīng)過點(diǎn)P(1,4),∴a+4b=1,故a、b都是正數(shù).故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標(biāo)軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當(dāng)且僅當(dāng)4ba=ab時,取等號,故為9.32.已知下列命題(其中a,b為直線,α為平面):
①若一條直線垂直于一個平面內(nèi)無數(shù)條直線,則這條直線與這個平面垂直;
②若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;
③若a∥α,b⊥α,則a⊥b;
④若a⊥b,則過b有且只有一個平面與a垂直.
上述四個命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無數(shù)條直線均為平行線時,不能得出直線與這個平面垂直,將“無數(shù)條”改為“所有”才正確;故①錯誤;②垂直于這條直線的直線與這個平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過b有且只有一個平面與a垂直,顯然正確.故選D.33.給出下列四個命題,其中正確的一個是()
A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說明預(yù)報變量對解釋變量的貢獻(xiàn)率是80%
B.在獨(dú)立性檢驗時,兩個變量的2×2列聯(lián)表中對角線上數(shù)據(jù)的乘積相差越大,說明這兩個變量沒有關(guān)系成立的可能性就越大
C.相關(guān)指數(shù)R2用來刻畫回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好
D.線性相關(guān)系數(shù)r的絕對值越接近于1,表明兩個隨機(jī)變量線性相關(guān)性越強(qiáng)答案:D34.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為______.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.35.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α36.設(shè)向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,則θ=______.答案:若a∥b,則sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故為:π4.37.從甲乙丙三人中任選兩名代表,甲被選中的概率為()A.12B.13C.23D.1答案:從3個人中選出2個人當(dāng)代表,則所有的選法共有3種,即:甲乙、甲丙、乙丙,其中含有甲的選法有兩種,故甲被選中的概率是23,故選C.38.拋物線y2=4px(p>0)的準(zhǔn)線與x軸交于M點(diǎn),過點(diǎn)M作直線l交拋物線于A、B兩點(diǎn).
(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;
(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點(diǎn)依次為N1,N2,N3,…,當(dāng)0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設(shè)直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(yù)(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點(diǎn)坐標(biāo)為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點(diǎn)依次為N1,N2,N3,(0<p<1).∴點(diǎn)Nn的坐標(biāo)為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).39.一個簡單多面體的面都是三角形,頂點(diǎn)數(shù)V=6,則它的面數(shù)為______個.答案:∵已知多面體的每個面有三條邊,每相鄰兩條邊重合為一條棱,∴棱數(shù)E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面體的面數(shù)F為8,棱數(shù)E為12.故為8.40.已知M(-2,0),N(2,0),|PM|-|PN|=3,則動點(diǎn)P的軌跡是()A.雙曲線B.雙曲線右支C.一條射線D.不存在答案:∵|PM|-|PN|=3,M(-2,0),N(2,0),且3<4=|MN|,根據(jù)雙曲線的定義,∴點(diǎn)P是以M(-2,0),N(2,0)為兩焦點(diǎn)的雙曲線的右支.故選B.41.將某班的60名學(xué)生編號為:01,02,…,60,采用系統(tǒng)抽樣方法抽取一個容量為5的樣本,且隨機(jī)抽得的一個號碼為04,則剩下的四個號碼依次是______.答案:用系統(tǒng)抽樣抽出的5個學(xué)生的號碼從小到大成等差數(shù)列,隨機(jī)抽得的一個號碼為04則剩下的四個號碼依次是16、28、40、52.故為:16、28、40、5242.三個數(shù)a=0.32,b=log20.3,c=20.3之間的大小關(guān)系是()A.a(chǎn)<c<bB.a(chǎn)<b<cC.b<a<cD.b<c<a答案:由對數(shù)函數(shù)的性質(zhì)可知:b=log20.3<0,由指數(shù)函數(shù)的性質(zhì)可知:0<a<1,c>1∴b<a<c故選C43.栽培甲、乙兩種果樹,先要培育成苗,然后再進(jìn)行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為,.
(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;
(2)求恰好有一種果樹能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹至少有一種成苗的概率為;(2).恰好有一種果樹培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹成苗為事件,;分別記甲、乙兩種果樹苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹至少有一種成苗的概率為;(2)解法一:分別記兩種果樹培育成苗且移栽成活為事件,則,.恰好有一種果樹培育成苗且移栽成活的概率為.解法二:恰好有一種果樹栽培成活的概率為.44.某公司一年購買某種貨物400噸,每次都購買x噸,運(yùn)費(fèi)為4萬元/次,一年的總存儲費(fèi)用為4x萬元,要使一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最小,則x=______噸.答案:某公司一年購買某種貨物400噸,每次都購買x噸,則需要購買400x次,運(yùn)費(fèi)為4萬元/次,一年的總存儲費(fèi)用為4x萬元,一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當(dāng)且僅當(dāng)1600x=4x即x=20噸時,等號成立即每次購買20噸時,一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最?。蕿椋?0.45.若kxy-8x+9y-12=0表示兩條直線,則實數(shù)k的值及兩直線所成的角分別是()
A.8,60°
B.4,45°
C.6,90°
D.2,30°答案:C46.如圖所示,正方體的棱長為1,點(diǎn)A是其一棱的中點(diǎn),則點(diǎn)A在空間直角坐標(biāo)系中的坐標(biāo)是()
A.(,,1)
B.(1,1,)
C.(,1,)
D.(1,,1)
答案:B47.袋子里有大小相同的3個紅球和4個黑球,今從袋子里隨機(jī)取球.
(Ⅰ)若有放回地取3次,每次取1個球,求取出1個紅球2個黑球的概率;
(Ⅱ)若無放回地取3次,每次取1個球,
①求在前2次都取出紅球的條件下,第3次取出黑球的概率;
②求取出的紅球數(shù)X
的分布列和數(shù)學(xué)期望.答案:(Ⅰ)記“取出1個紅球2個黑球”為事件A,根據(jù)題意有P(A)=C13(37)×(47)2=144343;
所以取出1個紅球2個黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機(jī)變量X
的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.48.已知A(k,12,1),B(4,5,1),C(-k,10,1),且A、B、C三點(diǎn)共線,則k=______.答案:∵AB=(4-k,-7,0),BC=(-k-4,5,0),且A、B、C三點(diǎn)共線,∴存在實數(shù)λ滿足AB=λBC,即4-k=λ(-k-4)-7=5λ0=0,解得k=-23.故為-23.49.若直線過點(diǎn)(1,2),(),則此直線的傾斜角是()
A.60°
B.45°
C.30°
D.90°答案:C50.設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標(biāo)為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22
)
和(5-22,5-22
),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:8第3卷一.綜合題(共50題)1.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).
(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.2.空間向量a=(2,-1,0),.b=(1,0,-1),n=(1,y,z),若n⊥a,n⊥b,則y+z=______.答案:∵n⊥a,n⊥b,∴n?a=0n?b=0,即2-y=01-z=0,解得y=2z=1,∴y+z=3.故為3.3.從30個足球中抽取10個進(jìn)行質(zhì)量檢測,說明利用隨機(jī)數(shù)法抽取這個樣本的步驟及公平性.答案:第一步:首先將30個足球編號:00,01,02…29,第二步:在隨機(jī)數(shù)表中隨機(jī)的選一個數(shù)作為開始.第三步:從選定的數(shù)字向右讀,得到二位數(shù)字,將它取出,把大于29的去掉,,按照這種方法繼續(xù)向右讀,取出的二位數(shù)若與前面相同,則去掉,依次下去,就得到一個具有10個數(shù)據(jù)的樣本.其公平性在于:第一隨機(jī)數(shù)表中每一個位置上出現(xiàn)的哪一個數(shù)都是等可能的,第二從30個個體中抽到那一個個體的號碼也是機(jī)會均等的,基于以上兩點(diǎn),利用隨機(jī)數(shù)表抽取樣本保證了各個個體被抽到的機(jī)會是等可能的.4.橢圓x216+y27=1上的點(diǎn)M到左準(zhǔn)線的距離為53,則點(diǎn)M到左焦點(diǎn)的距離為()A.8B.5C.274D.54答案:根據(jù)橢圓的第二定義可知M到左焦點(diǎn)F1的距離與其到左準(zhǔn)線的距離之比為離心率,依題意可知a=4,b=7∴c=3∴e=ca=34,∴根據(jù)橢圓的第二定義有:MF
1d=34∴M到左焦點(diǎn)的距離為MF1=53×34=54故選D.5.在區(qū)間[-1,1]上任取兩個數(shù)s和t,則關(guān)于x的方程x2+sx+t=0的兩根都是正數(shù)的概率是[
]A.
B.
C.
D.答案:A6.設(shè)α和β為不重合的兩個平面,給出下列命題:
(1)若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;
(2)若α外一條直線l與α內(nèi)的一條直線平行,則l和α平行;
(3)設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直;
(4)直線l與α垂直的充分必要條件是l與α內(nèi)的兩條直線垂直.
上面命題,真命題的序號是______(寫出所有真命題的序號)答案:由面面平行的判定定理可知,(1)正確.由線面平行的判定定理可知,(2)正確.對于(3)來說,α內(nèi)直線只垂直于α和β的交線l,得不到其是β的垂線,故也得不出α⊥β.對于(4)來說,l只有和α內(nèi)的兩條相交直線垂直,才能得到l⊥α.也就是說當(dāng)l垂直于α內(nèi)的兩條平行直線的話,l不一定垂直于α.7.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本、用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是______.若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取______人.答案:∵將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,∵第5組抽出的號碼為22,∴第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為37.40歲以下的年齡段的職工數(shù)為200×0.5=100,則應(yīng)抽取的人數(shù)為40200×100=20(人).故為:37;208.兩平行直線x+3y-5=0與x+3y-10=0的距離是______.答案:根據(jù)題意,得兩平行直線x+3y-5=0與x+3y-10=0的距離為d=|-5+10|12+32=102故為:1029.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點(diǎn),若f(c)=0,且0<x<c時,f(x)>0
(1)證明:1a是f(x)的一個根;(2)試比較1a與c的大?。鸢福鹤C明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個不同的交點(diǎn),f(x)=0的兩個根x1,x2滿足x1x2=ca,又f(c)=0,不妨設(shè)x1=c∴x2=1a,即1a是f(x)=0的一個根.(2)假設(shè)1a<c,又1a>0由0<x<c時,f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個根不相等∴1a≠c,只有1a>c10.某海域有A、B兩個島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個橢圓,其焦點(diǎn)恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點(diǎn)為原點(diǎn),AB所在直線為x軸建立直角坐標(biāo)系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因為焦點(diǎn)A的正西方向橢圓上的點(diǎn)為左頂點(diǎn),所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運(yùn)動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設(shè)此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)11.函數(shù)f(x)=2,0<x<104,10≤x<155,15≤x<20,則函數(shù)的值域是()A.[2,5]B.{2,4,5}C.(0,20)D.N答案:∵f(x)=20<x<10410≤x<15515≤x<20∴函數(shù)的值域是{2,4,5}故選B12.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()
A.
B.2
C.
D.答案:C13.設(shè)點(diǎn)P(,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()
A.3
B.5
C.
D.答案:D14.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C15.已知△ABC三個頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個三角形外接圓的方程為(x+2)2+(y-2)2=10.16.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()
A.小前提錯
B.結(jié)論錯
C.正確的
D.大前提錯答案:C17.在空間中,有如下命題:
①互相平行的兩條直線在同一個平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.
其中正確命題的個數(shù)為()個.
A.0
B.1
C.2
D.3答案:B18.在平行六面體ABCD-A′B′C′D′中,向量是()
A.有相同起點(diǎn)的向量
B.等長的向量
C.共面向量
D.不共面向量答案:C19.甲、乙兩位同學(xué)都參加了由學(xué)校舉辦的籃球比賽,它們都參加了全部的7場比賽,平均得分均為16分,標(biāo)準(zhǔn)差分別為5.09和3.72,則甲、乙兩同學(xué)在這次籃球比賽活動中,發(fā)揮得更穩(wěn)定的是()
A.甲
B.乙
C.甲、乙相同
D.不能確定答案:B20.圓心在x軸上,且過兩點(diǎn)A(1,4),B(3,2)的圓的方程為______.答案:設(shè)圓心坐標(biāo)為(m,0),半徑為r,則圓的方程為(x-m)2+y2=r2,∵圓經(jīng)過兩點(diǎn)A(1,4)、B(3,2)∴(1-m)2+42=r2(3-m)2+22=r2解得:m=-1,r2=20∴圓的方程為(x+1)2+y2=20故為:(x+1)2+y2=2021.直線x3+y4=t被兩坐標(biāo)軸截得的線段長度為1,則t的值是
______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標(biāo)軸截得的線段長度為(3t)2+(4t)2=|5t|=1所以t=±15故為±1522.設(shè)a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件答案:因為a,b∈R.“a=O”時“復(fù)數(shù)a+bi不一定是純虛數(shù)”.“復(fù)數(shù)a+bi是純虛數(shù)”則“a=0”一定成立.所以a,b∈R.“a=O”是“復(fù)數(shù)a+bi是純虛數(shù)”的必要而不充分條件.故選B.23.若純虛數(shù)z滿足(2-i)z=4-bi,(i是虛數(shù)單位,b是實數(shù)),則b=()
A.-2
B.2
C.-8
D.8答案:C24.設(shè)雙曲線的漸近線方程為2x±3y=0,則雙曲線的離心率為______.答案:∵雙曲線的漸近線方程是2x±3y=0,∴知焦點(diǎn)是在x軸時,ba=23,設(shè)a=3k,b=2k,則c=13k,∴e=133.焦點(diǎn)在y軸時ba=32,設(shè)a=2k,b=3k,則c=13k,∴e=132.故為:133或13225.已知f(x)=3mx2-2(m+n)x+n(m≠0)滿足f(0)?f(1)>0,設(shè)x1,x2是方程f(x)=0的兩根,則|x1-x2|的取值范圍為()
A.[,)
B.[,)
C.[,)
D.[,)答案:A26.若點(diǎn)M到定點(diǎn)F和到定直線l的距離相等,則下列說法正確的是______.
①點(diǎn)M的軌跡是拋物線;
②點(diǎn)M的軌跡是一條與x軸垂直的直線;
③點(diǎn)M的軌跡是拋物線或一條直線.答案:當(dāng)點(diǎn)F不在直線l上時,點(diǎn)M的軌跡是以F為焦點(diǎn)、l為準(zhǔn)線的拋物線;而當(dāng)點(diǎn)F在直線l上時,點(diǎn)M的軌跡是一條過點(diǎn)F,且與l垂直的直線.故為:③27.在△ABC所在平面存在一點(diǎn)O使得OA+OB+OC=0,則面積S△OBCS△AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)產(chǎn)品購銷合作協(xié)議文本
- 飼料購銷單次合同
- 網(wǎng)絡(luò)設(shè)備購買協(xié)議
- 頭戴式耳機(jī)購買合同
- 網(wǎng)絡(luò)防火墻設(shè)備技術(shù)招標(biāo)
- 個人房屋買賣合同的簽訂與合同修改
- 專業(yè)律師團(tuán)隊法律服務(wù)合同
- 房屋地基買賣合同樣本
- 軟件產(chǎn)品購銷合同格式設(shè)計
- 2024年度我國離婚案件執(zhí)行程序與律師代理合同12篇
- 2022年法考主觀題考試真題收集
- 銀行安全保衛(wèi)人員試題庫【含答案】
- 企業(yè)安全生產(chǎn)法律法規(guī)培訓(xùn)記錄參考模板范本
- 聚合單元事故案例 匯編
- SJG 102-2021 城市軌道交通工程信息模型分類和編碼標(biāo)準(zhǔn)-高清現(xiàn)行
- 十年十大考古發(fā)現(xiàn)系列之4:南漢二陵:雄霸嶺南數(shù)十年的“大漢”
- 淺談數(shù)據(jù)完整性
- (完整版)重慶中學(xué)教材使用版本
- 整車機(jī)艙布置基本知識
- 包裝裝潢承印五項制度登記表
- 可比樓盤量化定價法
評論
0/150
提交評論