2023年山西交通職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年山西交通職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年山西交通職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年山西交通職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年山西交通職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩37頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年山西交通職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.(幾何證明選做題)如圖,已知:△ABC內(nèi)接于圓O,點D在OC的延長線上,AD是圓O的切線,若∠B=30°,AC=2,則OD的長為______.答案:∵AD是圓O的切線,∠B=30°∴∠DAC=30°,∴∠OAC=60°,∴△AOC是一個等邊三角形,∴OA=OC=2,在直角三角形AOD中,OD=2AO=4,故為:4.2.一個箱子中裝有質(zhì)量均勻的10個白球和9個黑球,一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率是______.答案:10個白球中取5個白球有C105種9個黑球中取5個黑球有C95種∴一次摸出5個球,它們的顏色相同的有C105+C95種∴一次摸出5個球,在已知它們的顏色相同的情況下,該顏色是白色的概率=C510C510+C59=23故為:233.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a

(a+b)=a2+

a

b=1+1×2cos120°=0,所以a⊥c.故選A.4.一個多面體的三視圖分別是正方形、等腰三角形和矩形,其尺寸如圖,則該多面體的體積為()A.48cm3B.24cm3C.32cm3D.28cm3答案:由三視圖可知該幾何體是平放的直三棱柱,高為4,底面三角形一邊長為6,此邊上的高為4體積V=Sh=12×6×4×4=48cm3故選A5.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長為______.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故為:2036.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:767.(文)對于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運算性質(zhì)一定成立的所有序號是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.8.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F(xiàn)分別為AD,BC上點,且EF=3,EF∥AB,∴EF是梯形的中位線,設(shè)兩個梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:59.用反證法證明命題“在函數(shù)f(x)=x2+px+q中,|f(1)|,|f(2)|,|f(3)|至少有一個不小于”時,假設(shè)正確的是()

A.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有一個小于

B.假設(shè)|f(1)|,|f(2)|,|f(3)|至多有兩個小于

C.假設(shè)|f(1)|,|f(2)|,|f(3)|都不小于

D.假設(shè)|f(1)|,|f(2)|,|f(3)|都小于答案:D10.如圖,在正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點.用AB、AD、AA1表示向量MN,則MN=______.答案:∵MN=MB+BC+CN=12AB+AD+12(CB+BB1)=12AB+AD+12(-AD+AA1)=12AB+12AD+12AA1.故為12AB+12AD+12AA1.11.已知A(3,-2),B(-5,4),則以AB為直徑的圓的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB為直徑的圓的圓心為(-1,1),半徑r=(-1-3)2+(1+2)2=5,∴圓的方程為(x+1)2+(y-1)2=25故選B.12.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結(jié)CN并延長交AB于G,因為AB∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點,所以AC=12a+b,又E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,所以M為AC的中點,所以AM=12AC,所以AM=14a+12b.故為:14a+12b.13.命題:“如果ab=0,那么a、b中至少有一個等于0.”的逆否命題為______

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠014.函數(shù)y=2x的值域為______.答案:因為:x≥0,所以:y=2x≥20=1.∴函數(shù)y=2x的值域為:[1,+∞).故為:[1,+∞).15.已知直線l的斜率為k=-1,經(jīng)過點M0(2,-1),點M在直線上,以M0M的數(shù)量t為參數(shù),則直線l的參數(shù)方程為______.答案:∵直線l經(jīng)過點M0(2,-1),斜率為k=-1,傾斜角為3π4,∴直線l的參數(shù)方程為x=2+tcos3π4y=-1+tsin3π4

(t為參數(shù));即為x=2-22ty=-1+22t(t為參數(shù)).故為:x=2-22ty=-1+22t(t為參數(shù)).16.已知當(dāng)m∈R時,函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點,求實數(shù)a的取值范圍.答案:(1)m=0時,f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時a∈R.(2)m≠0時,由題意知,方程mx2+x-(m+a)=0恒有實數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時,a∈R;m≠0時,a∈[-1,1].17.下列四個命題中,正確的有

①;

②;

③,使;

④,使為29的約數(shù).答案:兩解析::①∵(-3)2-4×2×40,∴①正確;②∵2×(-1)+1=-1x,∴③不正確;④x=1是29的約數(shù),∴④正確;∴正確的有兩個點評:本題考查全稱命題、特稱命題,容易題18.若向量a=(2,-3,3)是直線l的方向向量,向量b=(1,0,0)是平面α的法向量,則直線l與平面α所成角的大小為______.答案:設(shè)直線l與平面α所成角為θ,則sinθ=|cos<a,b>|=|a?b||a|

|b|=222+(-3)2+(3)2×1=12,∵θ∈[0,π2],∴θ=π6,即直線l與平面α所成角的大小為π6.故為π6.19.已知非零向量,若與互相垂直,則=(

A.

B.4

C.

D.2答案:D20.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時,應(yīng)選用(

A.散點圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A21.定義:若函數(shù)f(x)對于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個不動點。

已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0)。

(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的不動點;

(2)若對任意的實數(shù)b,函數(shù)f(x)恒有兩個不動點,求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖象上兩個點A、B的橫坐標是函數(shù)f(x)的不動點,且A、B的中點C在函數(shù)g(x)=-x+的圖象上,求b的最小值。

(參考公式:A(x1,y1),B(x2,y2)的中點坐標為)

答案:解:(1)f(x)=x2-x-3,由x2-x-3=0,解得x=3或x=-1,所以所求的不動點為-1或3。(2)令ax2+(b+1)x+b+1=x,則ax2+bx+b-1=0,①由題意,方程①恒由兩個不等實根,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0對任意的b∈R恒成立,則△′=16a2-16a<0,故0(3)依題意,設(shè),則AB中點C的坐標為,又AB的中點在直線上,∴,∴,又x1,x2是方程①的兩個根,∴,∴,,∴,∴當(dāng)時,bmin=-1。</a<1。22.設(shè)函數(shù)f(x)=(2a-1)x+b是R上的減函數(shù),則a的范圍為______.答案:∵f(x)=(2a-1)x+b是R上的減函數(shù),∴2a-1<0,解得a<12.故為:a<12.23.已知向量a=(0,-1,1),b=(4,1,0),|λa+b|=57且λ>0,則λ=______.答案:∵λa+b=λ(0,-1,1)+(4,1,0)=(4,1-λ,λ),|λa+b|=57,∴42+(1-λ)2+λ2=57,化為λ2-λ-20=0,又λ>0,解得λ=5.故為5.24.已知二項分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:125.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.26.已知z是純虛數(shù),z+21-i是實數(shù),則z=______.答案:令Z=bi,則z+21-i=(2+bi)(1+i)(1-i)(1+i)=(2-b)+(2+b)i2又z+21-i是實數(shù),故b=-2則Z=-2i故為:-2i27.已知曲線C1,C2的極坐標方程分別為ρcosθ=3,ρ=4cosθ(ρ≥0,0≤θ<π2),則曲線C1與C2交點的極坐標為______.答案:我們通過聯(lián)立解方程組ρcosθ=3ρ=4cosθ(ρ≥0,0≤θ<π2)解得ρ=23θ=π6,即兩曲線的交點為(23,π6).故填:(23,π6).28.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C29.設(shè)a=0.7,b=0.8,c=log30.7,則()

A.c<b<a

B.c<a<b

C.a(chǎn)<b<c

D.b<a<c答案:B30.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標準方程,得x26+y24=1,∴這個橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.31.已知方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,求實數(shù)k的取值范圍.答案:令f(x)=x2-(k2-9)x+k2-5k+6,則∵方程x2-(k2-9)x+k2-5k+6=0的一根小于1,另一根大于2,∴f(1)<0

且f(2)<0,∴12-(k2-9)+k2-5k+6<0且22-2(k2-9)+k2-5k+6<0,即16-5k<0且k2+5k-28>0,解得k>137-52.32.下面是一個算法的偽代碼.如果輸出的y的值是10,則輸入的x的值是______.答案:由題意的程序,若x≤5,y=10x,否則y=2.5x+5,由于輸出的y的值是10,當(dāng)x≤5時,y=10x=10,得x=1;當(dāng)x>5時,y=2.5x+5=10,得x=2,不合,舍去.則輸入的x的值是1.故為:1.33.(坐標系與參數(shù)方程選做題)

直線x=-2+ty=1-t(t為參數(shù))被圓x=3+5cosθy=-1+5sinθ(θ為參數(shù),θ∈[0,2π))所截得的弦長為______.答案:直線和圓的參數(shù)方程化為普通方程得x+y+1=0,(x-3)2+(y+1)2=25,于是弦心距d=322,弦長l=225-92=82.故為:8234.如圖,PA、PB、DE分別與⊙O相切,若∠P=40°,則∠DOE等于()度.

A.40

B.50

C.70

D.80

答案:C35.若x,y∈R,x>0,y>0,且x+2y=1,則xy的最大值為______.答案:∵x,y∈R,x>0,y>0,且x+2y=1,∴1=x+2y≥2x?2y,∴22×xy≤1,∴xy≤

122=24,所以xy≤18.當(dāng)且僅當(dāng)x=2yx+2y=1時,即x=12,y=14時,取等號.故為:18.36.棱長為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長為2的正方體ABCD-A1B1C1D1中,BC1與

B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.37.如圖,平面內(nèi)有三個向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長為2和4,λ+μ=2+4=6.故為6.38.函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),則a+b=______.答案:∵函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),∴其定義域關(guān)于原點對稱,既[a,b]關(guān)于原點對稱.所以a與b互為相反數(shù)即a+b=0.故為:0.39.電視機的使用壽命顯像管開關(guān)的次數(shù)有關(guān).某品牌電視機的顯像管開關(guān)了10000次還能繼續(xù)使用的概率是0.96,開關(guān)了15000次后還能繼續(xù)使用的概率是0.80,則已經(jīng)開關(guān)了10000次的電視機顯像管還能繼續(xù)使用到15000次的概率是______.答案:記“開關(guān)了10000次還能繼續(xù)使用”為事件A,記“開關(guān)了15000次后還能繼續(xù)使用”為事件B,根據(jù)題意,易得P(A)=0.96,P(B)=0.80,則P(A∩B)=0.80,由條件概率的計算方法,可得P=P(A∩B)P(A)=0.800.96=56;故為56.40.在平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,則AE=______.(用a、b表示)答案:∵平行四邊形ABCD中,AC與BD交于點O,E是線段CD的中點,若AC=a,BD=b,∴AE=AO+OE=12a+OD+OC2=12a+a+b4=3a4+14b.故為:34a+14b.41.在我市新一輪農(nóng)村電網(wǎng)改造升級過程中,需要選一個電阻調(diào)試某村某設(shè)備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分數(shù)法進行優(yōu)選試驗時,依次將電阻從小到大安排序號,如果第1個試點與第2個試點比較,第1個試點是一個好點,則第3個試點值的阻值為[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C42.下列說法中正確的是()A.一個命題的逆命題為真,則它的逆否命題一定為真B.“a>b”與“a+c>b+c”不等價C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”D.一個命題的否命題為真,則它的逆命題一定為真答案:A、逆命題與逆否命題之間不存在必然的真假關(guān)系,故A錯誤;B、由不等式的性質(zhì)可知,“a>b”與“a+c>b+c”等價,故B錯誤;C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯誤;D、否命題和逆命題是互為逆否命題,有著一致的真假性,故D正確;故選D43.若點A(1,2,3),B(-3,2,7),且AC+BC=0,則點C的坐標為______.答案:設(shè)C(x,y,z),則AC+BC=(2x+2,2y-4,2z-10)=0,∴x=-1,y=2,z=5.故為(-1,2,5)44.在平行四邊形ABCD中,對角線AC與BD交于點O,AB+AD=λAO,則λ=______.答案:∵四邊形ABCD為平行四邊形,對角線AC與BD交于點O,∴AB+AD=AC,又O為AC的中點,∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故為:2.45.已知均為單位向量,且=,則,的夾角為()

A.

B.

C.

D.答案:C46.在對兩個變量x,y進行線性回歸分析時,有下列步驟:

①對所求出的回歸直線方程作出解釋;

②收集數(shù)據(jù)(xi,yi),i=1,2,…,n;

③求線性回歸方程;

④求相關(guān)系數(shù);

⑤根據(jù)所搜集的數(shù)據(jù)繪制散點圖.

如果根據(jù)可形性要求能夠作出變量x,y具有線性相關(guān)結(jié)論,則在下列操作順序中正確的是()

A.①②⑤③④

B.③②④⑤①

C.②④③①⑤

D.②⑤④③①答案:D47.點P(1,2,2)到原點的距離是()

A.9

B.3

C.1

D.5答案:B48.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據(jù)向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.49.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點,則a的值是(

A.-2

B.-1

C.0

D.1答案:B50.如果拋物線y2=a(x+1)的準線方程是x=-3,那么這條拋物線的焦點坐標是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:拋物線y2=a(x+1)可由拋物線y2=ax向左平移一個單位長度得到,因為拋物線y2=a(x+1)的準線方程是x=-3,所以拋物線y2=ax的準線方程是x=-2,且焦點坐標為(2,0),那么拋物線y2=a(x+1)的焦點坐標為(1,0).故選C.第2卷一.綜合題(共50題)1.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,則全班學(xué)生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:22.已知菱形ABCD的頂點A,C在橢圓x2+3y2=4上,對角線BD所在直線的斜率為1.

(Ⅰ)當(dāng)直線BD過點(0,1)時,求直線AC的方程;

(Ⅱ)當(dāng)∠ABC=60°時,求菱形ABCD面積的最大值.答案:(Ⅰ)由題意得直線BD的方程為y=x+1.因為四邊形ABCD為菱形,所以AC⊥BD.于是可設(shè)直線AC的方程為y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因為A,C在橢圓上,所以△=-12n2+64>0,解得-433<n<433.設(shè)A,C兩點坐標分別為(x1,y1),(x2,y2),則x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中點坐標為(3n4,n4).由四邊形ABCD為菱形可知,點(3n4,n4)在直線y=x+1上,所以n4=3n4+1,解得n=-2.所以直線AC的方程為y=-x-2,即x+y+2=0.(Ⅱ)因為四邊形ABCD為菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面積S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以當(dāng)n=0時,菱形ABCD的面積取得最大值43.3.在研究打酣與患心臟病之間的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“打酣與患心臟病有關(guān)”的結(jié)論,并且有99%以上的把握認為這個結(jié)論是成立的.下列說法中正確的是()

A.100個心臟病患者中至少有99人打酣

B.1個人患心臟病,則這個人有99%的概率打酣

C.100個心臟病患者中一定有打酣的人

D.100個心臟病患者中可能一個打酣的人都沒有答案:D4.判斷下列結(jié)出的輸入語句、輸出語句和賦值語句是否正確?為什么?

(1)輸出語句INPUT

a;b;c

(2)輸入語句INPUT

x=3

(3)輸出語句PRINT

A=4

(4)輸出語句PRINT

20.3*2

(5)賦值語句3=B

(6)賦值語句

x+y=0

(7)賦值語句A=B=2

(8)賦值語句

T=T*T.答案:(1)輸入語句

INPUT

a;b;c中,變量名之間應(yīng)該用“,”分隔,而不能用“;”分隔,故(1)錯誤;(2)輸入語句INPUT

x=3中,命令動詞INPUT后面應(yīng)寫成“x=“,3,故(2)錯誤;(3)輸出語句PRINT

A=4中,命令動詞PRINT后面應(yīng)寫成“A=“,4,故(3)錯誤;(4)輸出語句PRINT

20.3*2符合規(guī)則,正確;(5)賦值語句

3=B中,賦值號左邊必須為變量名,故(5)錯誤;(6)賦值語句

x+y=0中,賦值號左邊不能是表達式,故(6)錯誤;(7)賦值語句

A=B=2中.賦值語句不能連續(xù)賦值,故(7)錯誤;(8)賦值語句

T=T*T是,符合規(guī)則,正確;故正確的有(4)、(8)錯誤的是(1)、(2)、(3)、(5)、(6)、(7).5.管理人員從一池塘中撈出30條魚做上標記,然后放回池塘,將帶標記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.6.拋物線y=14x2的焦點坐標是______.答案:拋物線y=14x2

即x2=4y,∴p=2,p2=1,故焦點坐標是(0,1),故為(0,1).7.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長為______.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.8.拋物線y2=4x的焦點坐標是()

A.(4,0)

B.(2,0)

C.(1,0)

D.答案:C9.在命題“若a>b,則ac2>bc2”及它的逆命題、否命題、逆否命題之中,其中真命題有()A.4個B.3個C.2個D.1個答案:命題“若a>b,則ac2>bc2”為假命題;其逆命題為“若ac2>bc2,則a>b”為真命題;其否命題為“若a≤b,則ac2≤bc2”為真命題;其逆否命題為“若ac2≤bc2,則a≤b”為假命題;故選C10.已知{x1,x2,x3,…,xn}的平均數(shù)是2,則3x1+2,3x2+2,…,3xn+2的平均數(shù)=_______.答案:∵x1,x2,x3,…,xn的平均數(shù)是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均數(shù)為(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故為:811.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標系與參數(shù)方程選做題)在極坐標系中,圓ρ=-2sinθ的圓心的極坐標是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時,x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標為(-1,0),∴其極坐標是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.12.在(x+2y)n的展開式中第六項與第七項的系數(shù)相等,求展開式中二項式系數(shù)最大的項.答案:∵在(x+2y)n的展開式中第六項與第七項的系數(shù)相等,∴Cn525=Cn626,∴n=8,∴二項式共有9項,最中間一項的系數(shù)最大即展開式中二項式系數(shù)最大的項是第5項.13.下列命題中正確的是()

A.若,則

B.若,則

.若,則

D.若,則答案:C14.某會議室第一排共有8個座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為()A.12B.16C.24D.32答案:將空位插到三個人中間,三個人有兩個中間位置和兩個兩邊位置就是將空位分為四部分,五個空位四分只有1,1,1,2空位五差別,只需要空位2分別占在四個位置就可以有四種方法,另外三個人排列A33=6根據(jù)分步計數(shù)可得共有4×6=24故選C.15.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則

f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.16.從一堆蘋果中任取5只,稱得它們的質(zhì)量為(單位:克):125124121123127,則該樣本標準差s=______(克)(用數(shù)字作答).答案:由題意得:樣本平均數(shù)x=15(125+124+121+123+127)=124,樣本方差s2=15(12+02+32+12+32)=4,∴s=2.故為2.17.如圖,在半徑為7的⊙O中,弦AB,CD相交于點P,PA=PB=2,PD=1,則圓心O到弦CD的距離為______.答案:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP?1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半徑為7,則圓心O到弦CD的距離為d=r2-(CD2)2=7-(52)2=32.故為:32.18.(文)將圖所示的一個直角三角形ABC(∠C=90°)繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體的正視圖是下面四個圖形中的(

A.

B.

C.

D.

答案:B19.(參數(shù)方程與極坐標選講)在極坐標系中,圓C的極坐標方程為:ρ2+2ρcosθ=0,點P的極坐標為(2,π2),過點P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點P的極坐標為(2,π2),化為直角坐標為(0,2).設(shè)兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.20.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()

A.

B.

C.±

D.±答案:C21.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()

A.

B.

C.

D.4

答案:B22.某學(xué)校為了了解學(xué)生的日平均睡眠時間(單位:h),隨機選擇了n名同學(xué)進行調(diào)查,下表是這n名同學(xué)的日平均睡眠時間的頻率分布表:

序號(i)分組(睡眠時間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如[4,5)的中點值4.5)作為代表.若據(jù)此計算的這n名學(xué)生的日平均睡眠時間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)23.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設(shè)正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.24.已知函數(shù)f(x)=x21+x2.

(1)求f(2)與f(12),f(3)與f(13);

(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f(1x)有什么關(guān)系?并證明你的結(jié)論;

(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分25.已知某離散型隨機變量ξ的數(shù)學(xué)期望Eξ=76,ξ的分布列如下,則a=______.

答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:1326.已知點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0),則點E一定落在()A.BC邊的垂直平分線上B.BC邊的中線所在的直線上C.BC邊的高線所在的直線上D.BC邊所在的直線上答案:因為點E在△ABC所在的平面且滿足AB+AC=λAE(λ≠0)所以,根據(jù)平行四邊形法則,E一定落在這個平行四邊形的起點為A的對角線上,又平行四邊形對角線互相平分,所以E一定落在BC邊的中線所在的直線上,故選B.27.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標為

______.答案:由題意設(shè)C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標是(0,0,149)故為:(0,0,149)28.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點E,過點E作⊙O的切線交AC于點D,交AB的延長線于點P.問:PD與AC是否互相垂直?請說明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.29.已知0<a<2,復(fù)數(shù)z的實部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.30.已知直線l的斜率為k=-1,經(jīng)過點M0(2,-1),點M在直線上,以M0M的數(shù)量t為參數(shù),則直線l的參數(shù)方程為______.答案:∵直線l經(jīng)過點M0(2,-1),斜率為k=-1,傾斜角為3π4,∴直線l的參數(shù)方程為x=2+tcos3π4y=-1+tsin3π4

(t為參數(shù));即為x=2-22ty=-1+22t(t為參數(shù)).故為:x=2-22ty=-1+22t(t為參數(shù)).31.在畫兩個變量的散點圖時,下面哪個敘述是正確的()

A.預(yù)報變量x軸上,解釋變量y軸上

B.解釋變量x軸上,預(yù)報變量y軸上

C.可以選擇兩個變量中任意一個變量x軸上

D.可以選擇兩個變量中任意一個變量y軸上答案:B32.以下程序輸入2,3,4運行后,輸出的結(jié)果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C33.球的表面積與它的內(nèi)接正方體的表面積之比是()A.π3B.π4C.π2D.π答案:設(shè):正方體邊長設(shè)為:a則:球的半徑為3a2所以球的表面積S1=4?π?R2=4π34a2=3πa2而正方體表面積為:S2=6a2所以比值為:S1S2=π2故選C34.以過橢圓+=1(a>b>0)的右焦點的弦為直徑的圓與其右準線的位置關(guān)系是()

A.相交

B.相切

C.相離

D.不能確定答案:C35.點M的直角坐標為(,1,-2),則它的柱坐標為()

A.(2,,2)

B.(2,,2)

C.(2,,-2)

D.(2,-,-2)答案:C36.已知l∥α,且l的方向向量為(2,-8,1),平面α的法向量為(1,y,2),則y=______.答案:∵l∥α,∴l(xiāng)的方向向量(2,-8,1)與平面α的法向量(1,y,2)垂直,∴2×1-8×y+2=0,解得y=12.故為12.37.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中的象是()A.2B.5C.6D.8答案:∵x=2,∴y=2x+1則y=2×2+1=5,那么集合A中元素2在B中的象是5故選B.38.已知橢圓的中心在原點,對稱軸為坐標軸,焦點在x軸上,短軸的一個頂點B與兩個焦點F1,F(xiàn)2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標準方程.答案::設(shè)長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標準方程為x24+y2=1.39.下圖是由哪個平面圖形旋轉(zhuǎn)得到的(

)答案:A40.已知兩個非空集合A、B滿足A∪B={1,2,3},則符合條件的有序集合對(A,B)個數(shù)是()A.6B.8C.25D.27答案:按集合A分類討論若A={1,2,3},則B是A的子集即可滿足題意,故B有7種情況,即有序集合對(A,B)個數(shù)為7若A={1,2,}或{1,3}或{2,3}時,集合B中至少有一個元素,故每種情況下,B都有4種情況,故有序集合對(A,B)個數(shù)為4×3=12若A={1}或{3}或{2}時集合中至少有二個元素,故每種情況下,B都有2種情況,故有序集合對(A,B)個數(shù)為2×3=6綜上,符合條件的有序集合對(A,B)個數(shù)是7+12+6=25故選C41.(不等式選講選做題)

已知實數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因為a2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時取等號,所以ax+by的最大值為3.故為:3.42.對總數(shù)為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.43.集合{1,2,3}的真子集總共有()A.8個B.7個C.6個D.5個答案:集合{1,2,3}的真子集有?,{1},{2},{3},{1,2},{1,3},{2,3}共7個.故選B.44.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應(yīng)有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設(shè)第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應(yīng)變第個月兔子的對數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項就是年底應(yīng)有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準,構(gòu)造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE

I<=12F=S+QQ=SS=FI=I+1WENDPRINT

FEND45.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個數(shù)為(

)

A.0個

B.1個

C.2個

D.無窮多個答案:C46.已知按向量平移得到,則

.答案:3解析:由平移公式可得解得.47.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.48.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的一個焦點是F2(2,0),且b=3a.

(1)求雙曲線C的方程;

(2)設(shè)經(jīng)過焦點F2的直線l的一個法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點時,求實數(shù)m的取值范圍;并證明AB中點M在曲線3(x-1)2-y2=3上.

(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點,問是否存在實數(shù)m,使得∠AOB為銳角?若存在,請求出m的范圍;若不存在,請說明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴雙曲線為x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1?x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)設(shè)A(x1,y1),B(x2,y2),則x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中點M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3?m4+6m2+9-12m2(m2-3)2=3∴M在曲線3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),設(shè)存在實數(shù)m,使∠AOB為銳角,則OA?OB>0∴x1x2+y1y2>0因為y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,與m2>3矛盾∴不存在49.若函數(shù)y=f(x)的定義域是[12,2],則函數(shù)y=f(log2x)的定義域為______.答案:由題意知12≤log2x≤2,即log22≤log2x≤log24,∴2≤x≤4.故為:[2,4].50.如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點,F(xiàn)是橢圓的一個焦點,則根據(jù)橢圓的對稱性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.第3卷一.綜合題(共50題)1.過點(-1,3)且垂直于直線x-2y+3=0的直線方程為(

A.2x+y-1=0

B.2x+y-5=0

C.x+2y-5=0

D.x-2y+7=0答案:A2.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點,點P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.3.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.4.判斷下列結(jié)出的輸入語句、輸出語句和賦值語句是否正確?為什么?

(1)輸出語句INPUT

a;b;c

(2)輸入語句INPUT

x=3

(3)輸出語句PRINT

A=4

(4)輸出語句PRINT

20.3*2

(5)賦值語句3=B

(6)賦值語句

x+y=0

(7)賦值語句A=B=2

(8)賦值語句

T=T*T.答案:(1)輸入語句

INPUT

a;b;c中,變量名之間應(yīng)該用“,”分隔,而不能用“;”分隔,故(1)錯誤;(2)輸入語句INPUT

x=3中,命令動詞INPUT后面應(yīng)寫成“x=“,3,故(2)錯誤;(3)輸出語句PRINT

A=4中,命令動詞PRINT后面應(yīng)寫成“A=“,4,故(3)錯誤;(4)輸出語句PRINT

20.3*2符合規(guī)則,正確;(5)賦值語句

3=B中,賦值號左邊必須為變量名,故(5)錯誤;(6)賦值語句

x+y=0中,賦值號左邊不能是表達式,故(6)錯誤;(7)賦值語句

A=B=2中.賦值語句不能連續(xù)賦值,故(7)錯誤;(8)賦值語句

T=T*T是,符合規(guī)則,正確;故正確的有(4)、(8)錯誤的是(1)、(2)、(3)、(5)、(6)、(7).5.將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得直線的方程為()

A.y=-x

B.

C.y=-3x

D.答案:A6.橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為______.答案:方程x2+my2=1變?yōu)閤2+y21m=1∵焦點在y軸上,長軸長是短軸長的兩倍,∴1m=2,解得m=14故應(yīng)填147.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個邊長為a的正方形和1個邊長為b的正方形以及4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個邊長為c的正方形和4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.因為這兩個正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個錯誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達哥拉斯定理或畢氏定理證明:作兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.過點Q作QP∥BC,交AC于點P.過點B作BM⊥PQ,垂足為M;再過點F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c28.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點P(12,12),∴a12=12,?a=14.故選D.9.若命題“p∧q”為假,且“¬p”為假,則()A.p或q為假B.q假C.q真D.不能判斷q的真假答案:因為“?p”為假,所以p為真;又因為“p∧q”為假,所以q為假.對于A,p或q為真,對于C,D,顯然錯,故選B.10.已知空間四點A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x的值為[

]A

.4

B.1

C.10

D.11答案:D11.如圖:在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點,且EB=FB=1.

(1)求二面角C-DE-C1的大??;

(2)求異面直線EC1與FD1所成角的大??;

(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設(shè)EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設(shè)m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設(shè)所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).12.函數(shù)y=2x的值域為______.答案:因為:x≥0,所以:y=2x≥20=1.∴函數(shù)y=2x的值域為:[1,+∞).故為:[1,+∞).13.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域為x>0,又函數(shù)f(x)=log2x定義域x>0,故選A.14.從甲、乙、丙、丁四人中任選兩名代表,甲被選中的概率為

______.答案:由題意:甲、乙、丙、丁四人中任選兩名代表,共有六種情況:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每種情況出現(xiàn)的可能性相等,所以甲被選中的概率為12.故為:12.15.已知A、B、C三點不共線,O是平面ABC外的任一點,下列條件中能確定點M與點A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m?OA+n?OB+p?OC,m+n+p=1,說明M、A、B、C共面,可以判斷A、B、C都是錯誤的,則D正確.故選D.16.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運算語句

C.條件語句

D.循環(huán)語句答案:B17.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.18.根據(jù)如圖所示的偽代碼,可知輸出的結(jié)果a為______.答案:由題設(shè)循環(huán)體要執(zhí)行3次,圖知第一次循環(huán)結(jié)束后c=a+b=2,a=1.b=2,第二次循環(huán)結(jié)束后c=a+b=3,a=2.b=3,第三次循環(huán)結(jié)束后c=a+b=5,a=3.b=5,第四次循環(huán)結(jié)束后不滿足循環(huán)的條件是b<4,程序輸出的結(jié)果為3故為:3.19.設(shè)a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當(dāng)x<0時,0<b<1∴a>b20.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關(guān)于y軸對稱,則m最小正值是

A.

B.

C.

D.答案:A21.在7塊并排、形狀大小相同的試驗田上進行施化肥量對水稻產(chǎn)量影響的試驗,得到如下表所示的一組數(shù)據(jù)(單位:kg).

(1)畫出散點圖;

(2)求y關(guān)于x的線性回歸方程;

(3)若施化肥量為38kg,其他情況不變,請預(yù)測水稻的產(chǎn)量.答案:(1)根據(jù)題表中數(shù)據(jù)可得散點圖如下:(2)∵.x=15+20+25+30+35+40+457=30,.y=330+345+365+405+445+450+4557=399.3∴利用最小二乘法得到b=4.75,a=257∴根據(jù)回歸直線方程系數(shù)的公式計算可得回歸直線方程是?y=4.75x+257.(3)把x=38代入回歸直線方程得y=438,可以預(yù)測,施化肥量為38kg,其他情況不變時,水稻的產(chǎn)量是438kg.22.讀下面的程序:

上面的程序在執(zhí)行時如果輸入6,那么輸出的結(jié)果為()

A.6

B.720

C.120

D.1答案:B23.定義平面向量之間的一種運算“⊙”如下:對任意的=(m,n),=(p,q)

,令⊙=mq-np,下面說法錯誤的序號是()

①若若a與共線,則⊙=0

②⊙=⊙a

③對任意的λ∈R,有(λ)⊙=λ(⊙)

④(⊙)2+(a)2=||2||2

A.②

B.①②

C.②④

D.③④答案:A24.函數(shù)y=(12)x的值域為______.答案:因為函數(shù)y=(12)x是指數(shù)函數(shù),所以它的值域是(0,+∞).故為:(0,+∞).25.已知a,b,c是空間的一個基底,且實數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:026.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()

A.

B.

C.±

D.±答案:C27.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8,高為4的等腰三角形,左視圖是一個底邊長為6、高為4的等腰三角形.則該幾何體的體積為______.答案:由題意幾何體復(fù)原是一個底面邊長為8,6的距離,高為4,且頂點在底面的射影是底面矩形的中心的四棱錐.底面矩形的面積是48所以幾何體的體積是:13×46×4=64故為:64.28.某市為抽查控制汽車尾氣排放的執(zhí)行情況,選擇了抽取汽車車牌號的末位數(shù)字是6的汽車進行檢查,這樣的抽樣方式是(

A.抽簽法

B.簡單隨機抽樣

C.分層抽樣

D.系統(tǒng)抽樣答案:D29.證明:已知a與b均為有理數(shù),且a和b都是無理數(shù),證明a+b也是無理數(shù).答案:證明:假設(shè)a+b是有理數(shù),則(a+b)(a-b)=a-b由a>0,b>0則a+b>0即a+b≠0∴a-b=a-ba+b∵a,b?Q且a+b∈Q∴a-ba+b∈Q即(a-b)∈Q這樣(a+b)+(a-b)=2a∈Q從而a?Q(矛盾)∴a+b是無理數(shù)30.將5位志愿者分成4組,其中一組為2人,其余各組各1人,到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有______種(用數(shù)字作答).答案:由題意,先分組,再到4個路口協(xié)助交警執(zhí)勤,則不同的分配方案有C25A44=240種故為:240.31.根據(jù)給出的程序語言,畫出程序框圖,并計算程序運行后的結(jié)果.

答案:程序框圖:模擬程序運行:當(dāng)j=1時,n=1,當(dāng)j=2時,n=1,當(dāng)j=3時,n=1,當(dāng)j=4時,n=2,…當(dāng)j=8時,n=2,…當(dāng)j=11時,n=2,當(dāng)j=12時,此時不滿足循環(huán)條件,退出循環(huán)程序運行后的結(jié)果是:2.32.若向量、、滿足++=,=3,=1,=4,則等于(

A.-11

B.-12

C.-13

D.-14答案:C33.與

向量

=(2,-1,2)共線且滿足方程=-18的向量為()

A.不存在

B.-2

C.(-4,2,-4)

D.(4,-2,4)答案:D34.雙曲線的中心是原點O,它的虛軸長為26,右焦點為F(c,0)(c>0),直線l:x=a2c與x軸交于點A,且|OF|=3|OA|.過點F的直線與雙曲線交于P、Q兩點.

(Ⅰ)求雙曲線的方程;

(Ⅱ)若AP?AQ=0,求直線PQ的方程.答案:解.(Ⅰ)由題意,設(shè)曲線的方程為x2a2-y2b2=1(a>0,b>0)由已知a2+6=c2c=3a2c解得a=3,c=3所以雙曲線的方程:x23-y26=1.(Ⅱ)由(Ⅰ)知A(1,0),F(xiàn)(3,0),當(dāng)直線PQ與x軸垂直時,PQ方程為x=3.此時,AP?AQ≠0,應(yīng)舍去.當(dāng)直線PQ與x軸不垂直時,設(shè)直線PQ的方程為y=k(x-3).由方程組x23-y26=1y=k(x-3)得(k2-2)x2-6k2x+9k2+6=0由于過點F的直線與雙曲線交于P、Q兩點,則k2-2≠0,即k≠±2,由于△=36k4-4(k2-2)(9k2+6)=48(k2+1)>0得k∈R.∴k∈R且k≠±2(*)設(shè)P(x1,y1),Q(x2,y2),則x1+x2=6k2k2-2(1)x1x2=9k2+6k2-2(2)由直線PQ的方程得y1=k(x1-3),y2=k(x2-3)于是y1y2=k2(x1-3)(x2-3)=k2[x1x2-3(x1+x2)+9](3)∵AP?AQ=0,∴(x1-1,y1)?(x2-1,y2)=0即x1x2-(x1+x2)+1+y1y2=0(4)由(1)、(2)、(3)、(4)得9k2+6k2-2-6k2k2-2+1+k2(9k2+6k2-2-36k2k2-2+9)=0整理得k2=12,∴k=±22滿足(*)∴直線PQ的方程為x-2y-3=0或x+2y-3=035.已知兩個力F1,F(xiàn)2的夾角為90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論