2023年福州黎明職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年福州黎明職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年福州黎明職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年福州黎明職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年福州黎明職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年福州黎明職業(yè)技術(shù)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.雙曲線x29-y216=1的兩個焦點為F1、F2,點P在雙曲線上,若PF1⊥PF2,則點P到x軸的距離為______.答案:設點P(x,y),∵F1(-5,0)、F2(5,0),PF1⊥PF2,∴y-0x+5?y-0x-5=-1,∴x2+y2=25

①,又x29-y216=1,∴25-y29-y216=1,∴y2=16225,∴|y|=165,∴P到x軸的距離是165.2.,不等式恒成立的否定是

答案:,不等式成立解析::,不等式成立點評:本題考查推理與證明部分命題的否定,屬于容易題3.設a=log32,b=log23,c=,則()

A.c<b<a

B.a(chǎn)<c<b

C.c<a<b

D.b<c<a答案:C4.設向量a,b的夾角為60°的單位向量,則向量2a+b的模為()A.3B.7C.5D.3答案:|2a+b|=(2a+b)2=4a2+4a?b+b2=4+4×1×1×12+1=7故向量2a+b的模為7故選B5.在空間有三個向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.6.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結(jié)果用數(shù)值表示).答案:把AB看成一個整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數(shù)A77所以概率為A22A44A25A77=421故為:421.7.一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點,則在原來的正方體中()A.AB∥CDB.AB與CD相交C.AB⊥CDD.AB與CD所成的角為60°答案:將正方體的展開圖,還原為正方體,AB,CD為相鄰表面,且無公共頂點的兩條面上的對角線∴AB與CD所成的角為60°故選D.8.已知直線l:kx-y+1+2k=0.

(1)證明l經(jīng)過定點;

(2)若直線l交x軸負半軸于A,交y軸正半軸于B,△AOB的面積為S,求S的最小值并求此時直線l的方程;

(3)若直線不經(jīng)過第四象限,求k的取值范圍.答案:(1)由kx-y+1+2k=0,得y-1=k(x+2),所以,直線l經(jīng)過定點(-2,1).(2)由題意得A(2k+1-k,0),B(0,2k+1),且2k+1-k<01+2k>0,故k>0,△AOB的面積為S=12×2k+1k×(2k+1)=4k2+4k+12k=2k+2+12k≥4,當且僅當k=12時等號成立,此時面積取最小值4,k=12,直線的方程是:x-2y+4=0.(3)由直線過定點(-2,1),可得當斜率k>0或k=0時,直線不經(jīng)過第四象限.故k的取值范圍為[0,+∞).9.某程序框圖如圖所示,若a=3,則該程序運行后,輸出的x值為______.答案:由題意,x的初值為1,每次進行循環(huán)體則執(zhí)行乘二加一的運算,執(zhí)行4次后所得的結(jié)果是:1×2+1=3,3×2+1=7,7×2+1=15,15×2+1=31,故為:31.10.在對吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

A.若隨機變量K2的觀測值k>6.635,我們有99%的把握說明吸煙與患肺病有關(guān),則若某人吸煙,那么他有99%的可能患有肺病

B.若由隨機變量求出有99%的把握說吸煙與患肺病有關(guān),則在100個吸煙者中必有99個人患有肺病

C.若由隨機變量求出有95%的把握說吸煙與患肺病有關(guān),那么有5%的可能性使得推斷錯誤

D.以上說法均不正確答案:D11.下面為一個求20個數(shù)的平均數(shù)的程序,在橫線上應填充的語句為()

A.i>20

B.i<20

C.i>=20

D.i<=20

答案:A12.復數(shù)1+i(i為虛數(shù)單位)的模等于()A.2B.1C.22D.12答案:|1+i|=12+12=2.故選A.13.復數(shù)Z=arccosx-π+(-2x)i(x∈R,i是虛數(shù)單位),在復平面上的對應點只可能位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵a=arccosx-π,arccosx∈[0,π],∴a<0,∵b=-2x<0,∴復數(shù)Z對應的點的實部和虛部都小于零,∴復數(shù)在第三象限,故選C.14.利用計算機在區(qū)間(0,1)上產(chǎn)生兩個隨機數(shù)a和b,則方程有實根的概率為()

A.

B.

C.

D.1答案:A15.極坐標方程pcosθ=表示()

A.一條平行于x軸的直線

B.一條垂直于x軸的直線

C.一個圓

D.一條拋物線答案:B16.證明不等式1+12+13+…+1n<2n(n∈N*)答案:證法一:(1)當n=1時,不等式左端=1,右端=2,所以不等式成立;(2)假設n=k(k≥1)時,不等式成立,即1+12+13+…+1k<2k,則1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴當n=k+1時,不等式也成立.綜合(1)、(2)得:當n∈N*時,都有1+12+13+…+1n<2n.證法二:設f(n)=2n-(1+12+13+…+1n),那么對任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1?[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,對任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.17.

點M分有向線段的比為λ,已知點M1(1,5),M2(2,3),λ=-2,則點M的坐標為()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C18.點M,N分別是曲線ρsinθ=2和ρ=2cosθ上的動點,則|MN|的最小值是______.答案:∵曲線ρsinθ=2和ρ=2cosθ分別為:y=2和x2+y2=2x,即直線y=2和圓心在(1,0)半徑為1的圓.顯然|MN|的最小值為1.故為:1.19.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設M(x,y)為所求軌跡上任一點,則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.20.已知平面內(nèi)的向量a,b,c兩兩所成的角相等,且|a|=2,|b|=3,|c|=5,則|a+b+c|的值的集合為______.答案:設平面內(nèi)的向量a,b,c兩兩所成的角為α,|a+b+c|2=4+9+25+12cosα+20cosα+30cosα=38+62cosα,當α=0°時,|a+b+c|2=100,|a+b+c|=10,當α=120°時,|a+b+c|2=7,|a+b+c|=7.所以,|a+b+c|的值的集合為{7,10}.故為:{7,10}.21.在數(shù)學歸納法證明多邊形內(nèi)角和定理時,第一步應驗證()

A.n=1成立

B.n=2成立

C.n=3成立

D.n=4成立答案:C22.若兩條平行線L1:x-y+1=0,與L2:3x+ay-c=0

(c>0)之間的距離為,則等于()

A.-2

B.-6

C..2

D.0答案:A23.對于回歸方程y=4.75x+2.57,當x=28時,y

的估計值是______.答案:∵回歸方程y=4.75x+2.57,∴當x=28時,y的估計值是4.75×28+2.57=135.57.故為:135.57.24.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點,則a的值是(

A.-2

B.-1

C.0

D.1答案:B25.在參數(shù)方程所表示的曲線上有B、C兩點,它們對應的參數(shù)值分別為t1、t2,則線段BC的中點M對應的參數(shù)值是()

A.

B.

C.

D.答案:B26.實數(shù)變量m,n滿足m2+n2=1,則坐標(m+n,mn)表示的點的軌跡是()

A.拋物線

B.橢圓

C.雙曲線的一支

D.拋物線的一部分答案:A27.若一元二次方程kx2-4x-5=0

有兩個不相等實數(shù)根,則k

的取值范圍是______.答案:∵kx2-4x-5=0有兩個不相等的實數(shù)根,∴△=16+20k>0,且k≠0,解得,k>-45且k≠0;故是:k>-45且k≠0.28.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點.

(1)求異面直線BD1與CE所成角的余弦值;

(2)求二面角A1-EC-A的余弦值.答案:以D為原點,DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)29.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點E,則此圖形中一定相似的三角形有()對.

A.0

B.3

C.2

D.1

答案:C30.(理)在極坐標系中,半徑為1,且圓心在(1,0)的圓的方程為()

A.ρ=sinθ

B.ρ=cosθ

C.ρ=2sinθ

D.ρ=2cosθ答案:D31.一個盒子裝有10個紅、白兩色同一型號的乒乓球,已知紅色乒乓球有3個,若從盒子里隨機取出3個乒乓球,則其中含有紅色乒乓球個數(shù)的數(shù)學期望是______.答案:由題設知含有紅色乒乓球個數(shù)ξ的可能取值是0,1,2,3,P(ξ=0)=C37C310=724,P(ξ=1)=C27C13C310=2140,P(ξ=2)=C17C23C310=740,P(ξ=3)=C33C310=1120.∴Eξ=0×724+1×

2140+2×740+3×1120=910.故為:910.32.在△ABC中,已知A(2,3),B(8,-4),點G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標為______.答案:設C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).33.對于空間四點A、B、C、D,命題p:AB=xAC+yAD,且x+y=1;命題q:A、B、C、D四點共面,則命題p是命題q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件答案:根據(jù)命題p:AB=xAC+yAD,且x+y=1,可得AB

、AC

、AD

共面,從而可得命題q:A、B、C、D四點共面成立,故命題p是命題q的充分條件.根據(jù)命題q:A、B、C、D四點共面,可得A、B、C、D四點有可能在同一條直線上,若AB=xAC+yAD,則x+y不一定等于1,故命題p不是命題q的必要條件.綜上,可得命題p是命題q的充分不必要條件.故選:A.34.已知空間三點A(1,1,1)、B(-1,0,4)、C(2,-2,3),則AB與CA的夾角θ的大小是

______答案:AB=(-2,-1,3),CA=(-1,3,-2),cos<AB,CA>=(-2)×(-1)+(-1)×3+3×(-2)14?14=-714=-12,∴θ=<AB,CA>=120°.故為120°35.如果執(zhí)行程序框圖,那么輸出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是累加并輸出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故選C36.一口袋內(nèi)裝有5個黃球,3個紅球,現(xiàn)從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時停止,停止時取球的次數(shù)ξ是一個隨機變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2

故為C911(38)10(58)237.曲線的極坐標方程ρ=4sinθ化為直角坐標方程為______.答案:將原極坐標方程ρ=4sinθ,化為:ρ2=4ρsinθ,化成直角坐標方程為:x2+y2-4y=0,即x2+(y-2)2=4.故為:x2+(y-2)2=4.38.擬定從甲地到乙地通話m分鐘的電話費由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù),若通話費為10.6元,則通話時間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].39.下列四個散點圖中,使用線性回歸模型擬合效果最好的是()

A.

B.

C.

D.

答案:D40.過點(2,4)作直線與拋物線y2=8x只有一個公共點,這樣的直線有()

A.1條

B.2條

C.3條

D.4條答案:B41.若點M是△ABC的重心,則下列向量中與AB共線的是______.(填寫序號)

(1)AB+BC+AC

(2)AM+MB+BC

(3)AM+BM+CM

(4)3AM+AC.答案:對于(1)AB+BC+AC=2AC不與AB共線對于(2)AM+MB+BC=AB+BC=AC不與AB對于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0與AB對于(4)3AM+AC=AB+AC+AC不與AB故為:(3)42.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()

A.

B.

C.

D.4答案:C43.下列四個函數(shù)中,與y=x表示同一函數(shù)的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項A中的函數(shù)的定義域與已知函數(shù)不同,故排除選項A.選項B中的函數(shù)與已知函數(shù)具有相同的定義域、值域和對應關(guān)系,故是同一個函數(shù),故選項B滿足條件.選項C中的函數(shù)與已知函數(shù)的值域不同,故不是同一個函數(shù),故排除選項C.選項D中的函數(shù)與與已知函數(shù)的定義域不同,故不是同一個函數(shù),故排除選項D,故選B.44.設全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.45.函數(shù)f(x)為偶函數(shù),其圖象與x軸有四個交點,則該函數(shù)的所有零點之和為()A.4B.2C.1D.0答案:因為函數(shù)f(x)為偶函數(shù),所以函數(shù)圖象關(guān)于y軸對稱.又其圖象與x軸有四個交點,所以四個交點關(guān)于y軸對稱,不妨設四個交點的橫坐標為x1,x2,x3,x4,則根據(jù)對稱性可知x1+x2+x3+x4=0.故選D.46.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A47.已知某種從太空飛船中帶回的植物種子每粒成功發(fā)芽的概率都為,某植物研究所分兩個小組分別獨立開展該種子的發(fā)芽試驗,每次試驗種一粒種子,假定某次試驗種子發(fā)芽,則稱該次試驗是成功的,如果種子沒有發(fā)芽,則稱該次試驗是失敗的.

(1)第一個小組做了三次試驗,求至少兩次試驗成功的概率;

(2)第二個小組進行試驗,到成功了4次為止,求在第四次成功之前共有三次失敗,且恰有兩次連續(xù)失敗的概率.答案:(1)(2)解析:(1)第一個小組做了三次試驗,至少兩次試驗成功的概率是P(A)=·+=.(2)第二個小組在第4次成功前,共進行了6次試驗,其中三次成功三次失敗,且恰有兩次連續(xù)失敗,其中各種可能的情況種數(shù)為=12.因此所求的概率為P(B)=12×·=.48.關(guān)于生活中的圓錐曲線,有下面幾個結(jié)論:

(1)標準田徑運動場的內(nèi)道是一個橢圓;

(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線;

(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線;

(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.

其中正確命題的序號是______(把你認為正確命題的序號都填上).答案:(1)標準田徑運動場的內(nèi)道是有直道和彎道部分是半圓組成,不是橢圓.故錯誤(2)接受衛(wèi)星轉(zhuǎn)播的電視信號的天線設備,其軸截面與天線設備的交線是拋物線.故正確.(3)大型熱電廠的冷卻通風塔,其軸截面與通風塔的交線是雙曲線.故正確.(4)地球圍繞太陽運行的軌跡可以近似地看成一個橢圓.故正確.故為:(2)(3)(4)49.將參數(shù)方程化為普通方程為(

A.y=x-2

B.y=x+2

C.y=x-2(2≤x≤3)

D.y=x+2(0≤y≤1)答案:C50.如圖,⊙O過點B、C,圓心O在等腰Rt△ABC的內(nèi)部,,,

.則⊙O的半徑為(

).

A.6

B.13

C.

D.答案:C解析:分析:延長AO交BC于D,接OB,根據(jù)AB=AC,O是等腰Rt△ABC的內(nèi)心,推出AD⊥BC,BD=DC=3,AO平分∠BAC,求出∠BAD=∠ABD=45°,AD=BD=3,由勾股定理求出OB即可.解答:解:延長AO交BC于D,連接OB,∵⊙O過B、C,∴O在BC的垂直平分線上,∵AB=AC,圓心O在等腰Rt△ABC的內(nèi)部,∴AD⊥BC,BD=DC=3,AO平分∠BAC,∵∠BAC=90°,∴∠ADB=90°,∠BAD=45°,∴∠BAD=∠ABD=45°,∴AD=BD=3,∴OD=3-1=2,由勾股定理得:OB==故選C.第2卷一.綜合題(共50題)1.直角三角形兩直角邊邊長分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長∵兩直角邊邊長分別為3和4,∴斜邊長為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π52.在下列四個命題中,正確的共有()

①坐標平面內(nèi)的任何一條直線均有傾斜角和斜率;

②直線的傾斜角的取值范圍是[0,π];

③若一條直線的斜率為tanα,則此直線的傾斜角為α;

④若一條直線的傾斜角為α,則此直線的斜率為tanα.

A.0個

B.1個

C.2個

D.3個答案:A3.圓錐曲線G的一個焦點是F,與之對應的準線是,過F作直線與G交于A、B兩點,以AB為直徑作圓M,圓M與的位置關(guān)系決定G

是何種曲線之間的關(guān)系是:______

圓M與的位置相離相切相交G

是何種曲線答案:設圓錐曲線過焦點F的弦為AB,過A、B分別向相應的準線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2

?

e.設以AB為直徑的圓半徑為r,圓心到準線的距離為d,即有r=de,橢圓的離心率

0<e<1,此時r<d,圓M與準線相離;拋物線的離心率

e=1,此時r=d,圓M與準線相切;雙曲線的離心率

e>1,此時r>d,圓M與準線相交.故為:橢圓、拋物線、雙曲線.4.已知x2+4y2+kz2=36,(其中k>0)且t=x+y+z的最大值是7,則

k=______.答案:因為已知x2+4y2+kz2=36根據(jù)柯西不等式(ax+by+cz)2≤(a2+b2+c2)(x2+y2+z2)構(gòu)造得:即(x+y+z)2≤(x2+4y2+kz2)(12+(12)2+(1k)2)=36×[12+(12)2+(1k)2]=49.故k=9.故為:9.5.若雙曲線的焦點到其漸近線的距離等于實軸長,則該雙曲線的離心率為()

A.5

B.

C.2

D.答案:B6.已知點P(t,t),t∈R,點M是圓x2+(y-1)2=上的動點,點N是圓(x-2)2+y2=上的動點,則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C7.如圖,O為直線A0A2013外一點,若A0,A1,A2,A3,A4,A5,…,A2013中任意相鄰兩點的距離相等,設OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其結(jié)果為______.答案:設A0A2013的中點為A,則A也是A1A2012,…A1006A1007的中點,由向量的中點公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故為:1007(a+b)8.如圖,平行四邊形ABCD中,AE:EB=1:2,若△AEF的面積等于1cm2,則△CDF的面積等于______cm2.答案:平行四邊形ABCD中,有△AEF~△CDF∴△AEF與△CDF的面積之比等于對應邊長之比的平方,∵AE:EB=1:2,∴AE:CD=1:3∵△AEF的面積等于1cm2,∴∵△CDF的面積等于9cm2故為:99.在莖葉圖中,樣本的中位數(shù)為______,眾數(shù)為______.答案:由莖葉圖可知樣本數(shù)據(jù)共有6,出現(xiàn)在中間兩位位的數(shù)據(jù)是20,24,所以樣本的中位數(shù)是(20+24)÷2=22由莖葉圖可知樣本數(shù)據(jù)中出現(xiàn)最多的是12,樣本的眾數(shù)是12為:22,1210.已知f(x)=x2+4x+8,則f(3)=______.答案:f(3)=32+4×3+8=29,故為:29.11.已知x∈R,i為虛數(shù)單位,若(x-2)i-1-i為純虛數(shù),則x的值為()A.1B.-1C.2D.-2答案:(x-2)i-1-i=[(x-2)i-1]?i-i?i=(x-2)i2-i=(2-x)-i由純虛數(shù)的定義可得2-x=0,故x=2故選C12.直線2x+y-3=0與直線3x+9y+1=0的夾角是()

A.

B.a(chǎn)rctan2

C.

D.答案:C13.已知函數(shù)f(x)=2x+a的圖象不過第三象限,則常數(shù)a的取值范圍是

______.答案:函數(shù)f(x)=2x+a的圖象可根據(jù)指數(shù)函數(shù)f(x)=2x的圖象向上(a>0)或者向下(a<0)平移|a|個單位得到,若函數(shù)f(x)=2x+a的圖象不過第三象限,則只能向上平移或者不平移,因此,a的取值范圍是a≥0.故為:a≥0.14.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為()

A.

B.3

C.2

D.2答案:A15.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運會的一號、二號和三號場地的乒乓球裁判工作,每個場地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()

A.12種

B.48種

C.90種

D.96種答案:B16.某射擊運動員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1217.已知平面向量a,b,c滿足a+b+c=0,且a與b的夾角為135°,c與b的夾角為120°,|c|=2,則|a|=______.答案:∵a+b+c=0∴三個向量首尾相接后,構(gòu)成一個三角形且a與b的夾角為135°,c與b的夾角為120°,|c|=2,故所得三角形如下圖示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故為:618.運用三段論推理:

復數(shù)不可以比較大小,(大前提)

2010和2011都是復數(shù),(小前提)

2010和2011不可以比較大?。ńY(jié)

論)

該推理是錯誤的,產(chǎn)生錯誤的原因是______錯誤.(填“大前提”或“小前提”)答案:根據(jù)三段論推理,是由兩個前提和一個結(jié)論組成,大前提:復數(shù)不可以比較大小,是錯誤的,該推理是錯誤的,產(chǎn)生錯誤的原因是大前提錯誤.故為:大前提19.已知定點A(12.0),M為曲線x=6+2cosθy=2sinθ上的動點,若AP=2AM,試求動點P的軌跡C的方程.答案:設M(6+2cosθ,2sinθ),動點(x,y)由AP=2AM,即M為線段AP的中點故6+2cosθ=x+122,2sinθ=y+02即x=4cosθy=4sinθ即x2+y2=16∴動點P的軌跡C的方程為x2+y2=1620.若數(shù)據(jù)x1,x2,x3…xn的平均數(shù).x=5,方差σ2=2,則數(shù)據(jù)3x1+1,3x2+1,3x3+1…,3xn+1的方差為______.答案:∵x1,x2,x3,…,xn的方差為2,∴3x1+1,3x2+1,3x3+1,…,3xn+1的方差是32×2=18.故為:18.21.列舉兩種證明兩個三角形相似的方法.答案:三邊對應成比例,兩個三角形相似,兩邊對應成比例且夾角相等,兩個三角形相似.22.“∵四邊形ABCD為矩形,∴四邊形ABCD的對角線相等”,補充以上推理的大前提為()

A.正方形都是對角線相等的四邊形

B.矩形都是對角線相等的四邊形

C.等腰梯形都是對角線相等的四邊形

D.矩形都是對邊平行且相等的四邊形答案:B23.設a,b,c都是正數(shù),求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當且僅當a=b=c時,等號成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當且僅當a=b=c時,等號成立.24.已知A,B,C三點不共線,O為平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點不共線,點O是平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21525.一個口袋內(nèi)有5個白球和3個黑球,任意取出一個,如果是黑球,則這個黑球不放回且另外放入一個白球,這樣繼續(xù)下去,直到取出的球是白球為止.求取到白球所需的次數(shù)ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256

P(ξ=1)=3256

∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925626.已知A、B、C三點共線,A分的比為λ=-,A,B的縱坐標分別為2,5,則點C的縱坐標為()

A.-10

B.6

C.8

D.10答案:D27.若A(x,5-x,2x-1),B(1,x+2,2-x),當||取最小值時,x的值等于(

A.

B.

C.

D.答案:C28.在極坐標系中,若點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,則ρ0=______.答案:∵點A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點,∴ρ0=2cosπ3.∴ρ0=2×12=1.故為:1.29.橢圓上有一點P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()

A.3個

B.4個

C.6個

D.8個答案:C30.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D31.如果雙曲線的半實軸長為2,焦距為6,那么該雙曲線的離心率是()

A.

B.

C.

D.2答案:C32.正方體的內(nèi)切球和外接球的半徑之比為

A.:1

B.:2

C.2:

D.:3答案:D33.已知平面α內(nèi)有一個點A(2,-1,2),α的一個法向量為=(3,1,2),則下列點P中,在平面α內(nèi)的是()

A.(1,-1,1)

B.(1,3,)

C.,(1,-3,)

D.(-1,3,-)答案:B34.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為______.答案:∵a+2b+3c=6,∴根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當且僅當a:2b:3c=1:1:1時,即a=2,b=1,c=23時等號成立由此可得:當且僅當a=2,b=1,c=23時,a2+4b2+9c2的最小值為12故為:1235.有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.

(1)選修4-2:矩陣與變換

已知點A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時針旋轉(zhuǎn)45°”.

(Ⅰ)寫出矩陣M及其逆矩陣M-1;

(Ⅱ)請寫出△ABC在矩陣M-1對應的變換作用下所得△A1B1C1的面積.

(2)選修4-4:坐標系與參數(shù)方程

過P(2,0)作傾斜角為α的直線l與曲線E:x=cosθy=22sinθ(θ為參數(shù))交于A,B兩點.

(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;

(Ⅱ)求sinα的取值范圍.

(3)(選修4-5

不等式證明選講)

已知正實數(shù)a、b、c滿足條件a+b+c=3,

(Ⅰ)求證:a+b+c≤3;

(Ⅱ)若c=ab,求c的最大值.答案:(1)(Ⅰ)M=cos(-45°)-sin(-45°)sin(-45°)

cos(-45°)=2222-2222∵矩陣M表示變換“順時針旋轉(zhuǎn)45°”∴矩陣M-1表示變換“逆時針旋轉(zhuǎn)45°”∴M-1=cos45°-sin45°sin45°

cos45°=22-2222

22(Ⅱ)三角形ABC的面積S△ABC=12×(3-1)×2=2,由于△ABC在旋轉(zhuǎn)變換下所得△A1B1C1與△ABC全等,故三角形的面積不變,即S△A1B1C1=2.(2)(Ⅰ)曲線E的普通方程為x2+2y2=1L的參數(shù)方程為x=2+tcosαy=tsinα(t為參數(shù))

(Ⅱ)將L的參數(shù)方程代入由線E的方程得(1+sin2α)t2+(4cosα)t+3=0由△=(4cosα)2-4(1+sin2α)×3≥0得sin2α≤17∴0≤sinα≤77(3)(Ⅰ)證明:由柯西不等式得(a+b+c)2≤(a+b+c)(1+1+1)代入已知a+b+c=3,∴(a+b+c)2≤9a+b+c≤3當且僅當a=b=c=1,取等號.(Ⅱ)由a+b≥2ab得2ab+c≤3,若c=ab,則2c+c≤3,(c+3)(c-1)≤0,所以c≤1,c≤1,當且僅當a=b=1時,c有最大值1.36.設f(n)=nn+1,g(n)=(n+1)n,n∈N*.

(1)當n=1,2,3,4時,比較f(n)與g(n)的大?。?/p>

(2)根據(jù)(1)的結(jié)果猜測一個一般性結(jié)論,并加以證明.答案:(1)當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,(2)根據(jù)上述結(jié)論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.37.在極坐標系中,點A的極坐標為(2,0),直線l的極坐標方程為ρ(cosθ+sinθ)+2=0,則點A到直線l的距離為______.答案:由題意得點A(2,0),直線l為

ρ(cosθ+sinθ)+2=0,即

x+y+2=0,∴點A到直線l的距離為

|2+0+2|2=22,故為22.38.已知{x1,x2,x3,…,xn}的平均數(shù)是2,則3x1+2,3x2+2,…,3xn+2的平均數(shù)=_______.答案:∵x1,x2,x3,…,xn的平均數(shù)是2即(x1+x2+x3+…+xn)÷n=2∴3x1+2,3x2+2,…,3xn+2的平均數(shù)為(3x1+2+3x2+2+…+3xn+2)÷n=[3(x1+x2+x3+…+xn)+2n]÷n=3×2+2=8故為:839.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設拋物線C的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點F(2,0),準線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設準線和x軸的交點為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點A(0,43),把y=43代入拋物線求得x=6,∴點P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.40.如圖,直線l1,l2,l3的斜率分別為k1,k2,k3,則()

A.k1>k2>k3

B.k3>k2>k1

C.k2>k1>k3

D.k3>k1>k2

答案:C41.在平面直角坐標系xOy中,已知點A(0,0),B(-2,0),C(-2,1).設k為非零實數(shù),矩陣M=.k001.,N=.0110.,點A、B、C在矩陣MN對應的變換下得到點分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,

(1)求k的值.

(2)判斷變換MN是否可逆,如果可逆,求矩陣MN的逆矩陣;如不可逆,說明理由.答案:(1)由題設得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).計算得△ABC面積的面積是1,△A1B1C1的面積是|k|,則由題設知:|k|=2×1=2.所以k的值為2或-2.(2)令MN=A,設B=abcd是A的逆矩陣,則AB=0k10abcd=1001?ckdkab=1001?ck=1dk=0a=0b=1①當k≠0時,上式?a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩陣是B=011k0.(10分)②當k≠0時,上式不可能成立,MN不可逆,(11分).42.若函數(shù)f(x)=loga(x+b)的圖象如圖,其中a,b為常數(shù).則函數(shù)g(x)=ax+b的大致圖象是(

)

答案:D解析:試題分析:解:由函數(shù)f(x)=loga(x+b)的圖象為減函數(shù)可知0<a<1,f(x)=loga(x+b)的圖象由f(x)=logax向左平移可知0<b<1,故函數(shù)g(x)=ax+b的大致圖象是D故選D.43.點(2,-2)的極坐標為______.答案:∵點(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(2,-2)的極坐標為(22,-π4)故為(22,-π4).44.9、從4臺甲型和5臺乙型電視機中任意取出3臺,其中至少要有甲型與乙型電視機各1臺,則不同的取法共有()

A.140種

B.84種

C.70種

D.35種答案:C45.設△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+

2×12=3,故為:346.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負時,由韋達定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根時,-1≤a≤178故為:-1≤a≤17847.設a1,a2,…,an為正數(shù),求證:a21a2+a22a3+…+a2n-1an+a2na1≥a1+a2+…+an.答案:證明:不妨設a1>a2>…>an>0,則a12>a22>…>an2,1a1<1a2<…1an由排序原理:亂序和≥反序和,可得:a21a2+a22a3+…+a2n-1an+a2na1≥a12a1+a22a2+…+an2an=a1+a2+…+an.48.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為

______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c49.系數(shù)矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.50.老師在班級50名學生中,依次抽取學號為5,10,15,20,25,30,35,40,45,50的學和進行作業(yè)檢查,這種抽樣方法是()

A.隨機抽樣

B.分層抽樣

C.系統(tǒng)抽樣

D.以上都是答案:C第3卷一.綜合題(共50題)1.不等式ax2+bx+2>0的解集是(-,),則a+b的值是()

A.10

B.-10

C.14

D.-14答案:D2.某次我市高三教學質(zhì)量檢測中,甲、乙、丙三科考試成績的直方圖如如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說法中正確的一項是()

A.甲科總體的標準差最小

B.丙科總體的平均數(shù)最小

C.乙科總體的標準差及平均數(shù)都居中

D.甲、乙、丙的總體的平均數(shù)不相同

答案:A3.已知直線方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()

A.平行

B.重合

C.相交

D.以上答案都不對答案:A4.設曲線C的方程是,將C沿x軸,y軸正向分別平移單位長度后,得到曲線C1.(1)寫出曲線C1的方程;(2)證明曲線C與C1關(guān)于點A(,)對稱.答案:(1)(2)證明略解析:(1)由已知得,,則平移公式是即代入方程得曲線C1的方程是(2)在曲線C上任取一點,設是關(guān)于點A的對稱點,則有,,代入曲線C的方程,得關(guān)于的方程,即可知點在曲線C1上.反過來,同樣可以證明,在曲線C1上的點關(guān)于點A的對稱點在曲線C上,因此,曲線C與C1關(guān)于點A對稱.5.已知,求證:.答案:證明略解析:因為是輪換對稱不等式,可考慮由局部證整體.,相加整理得.當且僅當時等號成立.【名師指引】綜合法證明不等式常用兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這一結(jié)論,運用時要結(jié)合題目條件,有時要適當變形.6.在極坐標系中與圓ρ=4sinθ相切的一條直線的方程為()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A7.若直線l經(jīng)過點M(1,5),且傾斜角為2π3,則直線l的參數(shù)方程為______.答案:由于過點(a,b)傾斜角為α的直線的參數(shù)方程為x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點M(1,5),且傾斜角為2π3,故直線的參數(shù)方程是x=1+t?cos2π3y=5+t?sin2π3即x=1-12ty=5+32t(t為參數(shù)).故為:x=1-12ty=5+32t(t為參數(shù)).8.將參數(shù)方程化為普通方程為(

A.y=x-2

B.y=x+2

C.y=x-2(2≤x≤3)

D.y=x+2(0≤y≤1)答案:C9.直線(t為參數(shù))被圓x2+y2=9截得的弦長為()

A.

B.

C.

D.答案:B10.設i為虛數(shù)單位,若(x+i)(1-i)=y,則實數(shù)x,y滿足()

A.x=-1,y=1

B.x=-1,y=2

C.x=1,y=2

D.x=1,y=1答案:C11.點M,N分別是曲線ρsinθ=2和ρ=2cosθ上的動點,則|MN|的最小值是______.答案:∵曲線ρsinθ=2和ρ=2cosθ分別為:y=2和x2+y2=2x,即直線y=2和圓心在(1,0)半徑為1的圓.顯然|MN|的最小值為1.故為:1.12.已知G是△ABC的重心,過G的一條直線交AB、AC兩點分別于E、F,且有AE=λAB,AF=μAC,則1λ+1μ=______.答案:∵G是△ABC的重心∴取過G平行BC的直線EF∵AE=λAB,AF=μAC∴λ=23,μ=23∴1λ+1μ=32+32=3故為313.如圖中的陰影部分用集合表示為______.答案:由已知中陰影部分所表示的集合元素滿足是A的元素且C的元素,或是B的元素”,故陰影部分所表示的集合是(A∪C)∩(CUB)故為:B∪(A∩C)14.某射擊運動員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1215.已知頂點在坐標原點,焦點在x軸上的拋物線被直線y=2x+1截得的弦長為15,求此拋物線方程.答案:由題意可設拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2

]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x16.下列數(shù)字特征一定是數(shù)據(jù)組中的數(shù)是()

A.眾數(shù)

B.中位數(shù)

C.標準差

D.平均數(shù)答案:A17.點P1,P2是線段AB的2個三等分點,若P∈{P1,P2},則P分有線段AB的比λ的最大值和最小值分別為()

A.3,

B.3,

C.2,

D.2,1答案:C18.若a=()x,b=x3,c=logx,則當x>1時,a,b,c的大小關(guān)系式()

A.a(chǎn)<b<c

B.c<b<a

C.c<a<b

D.a(chǎn)<c<b答案:C19.如圖,PA,PB切⊙O于

A,B兩點,AC⊥PB,且與⊙O相交于

D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因為垂直∠DCB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°20.將1,2,3,9這9個數(shù)字填在如圖的9個空格中,要求每一行從左到右,每一列從上到下分別依次增大,當3,4固定在圖中的位置時,填寫空格的方法數(shù)為()

A.6種

B.12種

C.18種

D.24種

答案:A21.如圖,在四棱臺ABCD-A1B1C1D1中,下底ABCD是邊長為2的正方形,上底A1B1C1D1是邊長為1的正方形,側(cè)棱DD1⊥平面ABCD,DD1=2.

(Ⅰ)求證:B1B∥平面D1AC;

(Ⅱ)求二面角B1-AD1-C的余弦值.答案:以D為原點,以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標系D-xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).…(3分)(Ⅰ)證明:設AC∩BD=E,連接D1、E,則有E(1,1,0),D1E=B1B=(1,1,-2),所以B1B∥D1E,∵BB?平面D1AC,D1E?平面D1AC,∴B1B∥平面D1AC;…(6分)(II)D1B1=(1,1,0),D1A=(2,0,-2),設n=(x,y,z)為平面AB1D1的法向量,n?B1D1=x+y=0,n?D1A=2x-2z=0.于是令x=1,則y=-1,z=1.則n=(1,-1,1)…(8分)同理可以求得平面D1AC的一個法向量m=(1,1,1),…(10分)cos<m,n>=m?n|m||n|=13.∴二面角B1-AD1-C的余弦值為13.…(12分)22.(本題10分)設函數(shù)的定義域為A,的定義域為B.(1)求A;

(2)若,求實數(shù)a的取值范圍答案:(1);(2)。解析:略23.定義平面向量之間的一種運算“⊙”如下:對任意的=(m,n),=(p,q)

,令⊙=mq-np,下面說法錯誤的序號是()

①若若a與共線,則⊙=0

②⊙=⊙a

③對任意的λ∈R,有(λ)⊙=λ(⊙)

④(⊙)2+(a)2=||2||2

A.②

B.①②

C.②④

D.③④答案:A24.已知命題p:?x∈R,x2-x+1>0,則命題¬p

是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.25.若直線x=1的傾斜角為α,則α等于

______.答案:因為直線x=1與y軸平行,所以直線x=1的傾斜角為90°.故為:90°26.已知0≤θ<2π,復數(shù)icosθ+isinθ>0,則θ的值是()A.π2B.3π2C.(0,π)內(nèi)的任意值D.(0,π2)∪(3π2,2π)內(nèi)的任意值答案:復數(shù)icosθ+isinθ>0,可得icosθ+sinθ>0,因為0≤θ<2π,所以θ=π2.故選A.27.直線3x+4y-12=0和3x+4y+3=0間的距離是

______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.28.已知定點A(2,0),圓O的方程為x2+y2=8,動點M在圓O上,那么∠OMA的最大值是()

A.

B.

C.a(chǎn)rccos

D.a(chǎn)rccos答案:B29.已知α1,α2,…αn∈(0,π),n是大于1的正整數(shù),求證:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:證明:下面用數(shù)學歸納法證明(1)n=2時,|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|?|sinα2|<sinα1+sinα2,所以n=2時成立.(2)假設n=k(k≥2)時成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk當n=k+1時,|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|?|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1時也成立.由(1)(2)得,原式成立.30.設集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M與P的關(guān)系為______.答案:由x+y<0,xy>0,?x<0,y<0.∴M=P.故為M=P.31.已知平面上直線l的方向向量=(-,),點O(0,0)和A(1,-2)在l上的射影分別是O'和A′,則=λ,其中λ等于()

A.

B.-

C.2

D.-2答案:D32.某個命題與正整數(shù)n有關(guān),如果當n=k(k∈N+)時命題成立,那么可推得當n=k+1時命題也成立.

現(xiàn)已知當n=7時該命題不成立,那么可推得()

A.當n=6時該命題不成立

B.當n=6時該命題成立

C.當n=8時該命題不成立

D.當n=8時該命題成立答案:A33.參數(shù)方程(t是參數(shù))表示的圖象是()

A.射線

B.直線

C.圓

D.雙曲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論