2023年荊州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年荊州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年荊州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年荊州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年荊州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年荊州職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實(shí)數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實(shí)數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實(shí)數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.2.①平行向量一定相等;②不相等的向量一定不平行;③相等向量一定共線;④共線向量一定相等;⑤長(zhǎng)度相等的向量是相等向量;⑥平行于同一個(gè)向量的兩個(gè)向量是共線向量,其中正確的命題是______.答案:∵平行向量即為共線向量其定義是方向相同或相反;相等向量的定義是模相等、方向相同;①平行向量不一定相等;故錯(cuò);②不相等的向量也可能不平行;故錯(cuò);③相等向量一定共線;正確;④共線向量不一定相等;故錯(cuò);⑤長(zhǎng)度相等的向量方向相反時(shí)不是相等向量;故錯(cuò);⑥平行于零向量的兩個(gè)向量是不一定是共線向量,故錯(cuò).其中正確的命題是③.故為:③.3.用反證法證明“3是無理數(shù)”時(shí),第一步應(yīng)假設(shè)“______.”答案:反證法肯定題設(shè)而否定結(jié)論,從而得出矛盾,題設(shè)“3是無理數(shù)”,那么假設(shè)為:3是有理數(shù).故為3是有理數(shù).4.求證:不論λ取什么實(shí)數(shù)時(shí),直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).答案:證明:直線(2λ-1)x+(λ+3)y-(λ-11)=0即λ(2x+y-1)+(-x+3y+11)=0,根據(jù)λ的任意性可得2x+y-1=0-x+3y+11=0,解得x=2y=-3,∴不論λ取什么實(shí)數(shù)時(shí),直線(2λ-1)x+(λ+3)y-(λ-11)=0都經(jīng)過一個(gè)定點(diǎn)(2,-3).5.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關(guān)系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.6.若一個(gè)底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如下圖所示,則這個(gè)棱柱的體積為()A.123B.363C.273D.6答案:此幾何體為一個(gè)三棱柱,棱柱的高是4,底面正三角形的高是33,設(shè)底面邊長(zhǎng)為a,則32a=33,∴a=6,故三棱柱體積V=12?62?32?4=363.故選B7.如圖,直線AB是平面α的斜線,A為斜足,若點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),使得點(diǎn)P到直線AB的距離為定值a(a>0),則動(dòng)點(diǎn)P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因?yàn)辄c(diǎn)P到直線AB的距離為定值a,所以,P點(diǎn)在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點(diǎn)P在平面α內(nèi)運(yùn)動(dòng),所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.8.若90°<θ<180°,曲線x2+y2sinθ=1表示()

A.焦點(diǎn)在x軸上的雙曲線

B.焦點(diǎn)在y軸上的雙曲線

C.焦點(diǎn)在x軸上的橢圓

D.焦點(diǎn)在y軸上的橢圓答案:D9.規(guī)定運(yùn)算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.10.在航天員進(jìn)行的一項(xiàng)太空實(shí)驗(yàn)中,要先后實(shí)施6個(gè)程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實(shí)施時(shí)必須相鄰,請(qǐng)問實(shí)驗(yàn)順序的編排方法共有()

A.24種

B.48種

C.96種

D.144種答案:C11.下面哪個(gè)不是算法的特征()A.抽象性B.精確性C.有窮性D.唯一性答案:根據(jù)算法的概念,可知算法具有抽象性、精確性、有窮性等,同一問題,可以有不同的算法,故選D.12.曲線C:x=t-2y=1t+1(t為參數(shù))的對(duì)稱中心坐標(biāo)是______.答案:曲線C:x=t-2y=1t+1(t為參數(shù))即y-1=1x+2,其對(duì)稱中心為(-2,1).故為:(-2,1).13.以下命題:

①兩個(gè)共線向量是指在同一直線上的兩個(gè)向量;

②共線的兩個(gè)向量互相平行;

③共面的三個(gè)向量是指在同一平面內(nèi)的三個(gè)向量;

④共面的三個(gè)向量是指平行于同一平面的三個(gè)向量.

其中正確命題的序號(hào)是______.答案:解①根據(jù)共面與共線向量的定義可知①錯(cuò)誤.②根據(jù)共線向量的定義可知②正確.③根據(jù)共面向量的定義可知③錯(cuò)誤.④根據(jù)共面向量的定義可知④正確.故為:②④.14.直線被圓x2+y2=9截得的弦長(zhǎng)為(

A.

B.

C.

D.答案:B15.直線kx-y+1=3k,當(dāng)k變動(dòng)時(shí),所有直線都通過定點(diǎn)[

]

A.(3,1)

B.(0,1)

C.(0,0)

D.(2,1)答案:A16.(幾何證明選講選做題)

如圖,已知AB是⊙O的一條弦,點(diǎn)P為AB上一點(diǎn),PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長(zhǎng)是______.答案:∵AB是⊙O的一條弦,點(diǎn)P為AB上一點(diǎn),PC⊥OP,PC交⊙O于C,∴AP×PB=PC2,∵AP=4,PB=2,∴PC2=8,解得PC=22.故為:22.17.已知函數(shù)f(x)=2x,x≤1log13x,x>1,若f(a)=2,則a=______.答案:當(dāng)a≤1時(shí)y=2x∴2a=2∴a=1當(dāng)a>1時(shí)y=log13x∴2=loga13∴a=19不成立所以a=1故為:118.給出20個(gè)數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個(gè)求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.19.設(shè)O、A、B、C為平面上四個(gè)點(diǎn),(

A.2

B.2

C.3

D.3答案:C20.已知x與y之間的一組數(shù)據(jù):

x0123y1357則y與x的線性回歸方程為y=bx+a必過點(diǎn)______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4),∴y與x的線性回歸方程為y=bx+a必過點(diǎn)(1.5,4)故為:(1.5,4)21.設(shè)隨機(jī)變量x~B(n,p),若Ex=2.4,Dx=1.44則()

A.n=4,p=0.6

B.n=6,p=0.4

C.n=8,p=0.3

D.n=24,p=0.1答案:B22.教學(xué)大樓共有五層,每層均有兩個(gè)樓梯,由一層到五層的走法有()

A.10種

B.25種

C.52種

D.24種答案:D23.已知直線l經(jīng)過點(diǎn)P(3,1),且被兩平行直線l1;x+y+1=0和l2:x+y+6=0截得的線段之長(zhǎng)為5,求直線l的方程.答案:解法一:若直線l的斜率不存在,則直線l的方程為x=3,此時(shí)與l1、l2的交點(diǎn)分別為A′(3,-4)或B′(3,-9),截得的線段AB的長(zhǎng)|AB|=|-4+9|=5,符合題意.若直線l的斜率存在,則設(shè)直線l的方程為y=k(x-3)+1.解方程組y=k(x-3)+1x+y+1=0得A(3k-2k+1,-4k-1k+1).解方程組y=k(x-3)+1x+y+6=0得B(3k-7k+1,-9k-1k+1).由|AB|=5.得(3k-2k+1-3k-7k+1)2+(-4k-1k+1+9k-1k+1)2=52.解之,得k=0,直線方程為y=1.綜上可知,所求l的方程為x=3或y=1.解法二:由題意,直線l1、l2之間的距離為d=|1-6|2=522,且直線L被平行直線l1、l2所截得的線段AB的長(zhǎng)為5,設(shè)直線l與直線l1的夾角為θ,則sinθ=5225=22,故θ=45°.由直線l1:x+y+1=0的傾斜角為135°,知直線l的傾斜角為0°或90°,又由直線l過點(diǎn)P(3,1),故直線l的方程為:x=3或y=1.解法三:設(shè)直線l與l1、l2分別相交A(x1,y1)、B(x2,y2),則x1+y1+1=0,x2+y2+6=0.兩式相減,得(x1-x2)+(y1-y2)=5.①又(x1-x2)2+(y1-y2)2=25.②聯(lián)立①、②可得x1-x2=5y1-y2=0或x1-x2=0y1-y2=5由上可知,直線l的傾斜角分別為0°或90°.故所求的直線方程為x=3或y=1.24.在極坐標(biāo)系中與圓ρ=4sinθ相切的一條直線的方程為()

A.ρcosθ=2

B.ρsinθ=2

C.ρ=4sin(θ+)

D.ρ=4sin(θ-)答案:A25.已知點(diǎn)A(1,3),B(4,-1),則與向量同方向的單位向量為()

A.(,-)

B.(,-)

C.(-,)

D.(-,)答案:A26.袋子里有大小相同的3個(gè)紅球和4個(gè)黑球,今從袋子里隨機(jī)取球.

(Ⅰ)若有放回地取3次,每次取1個(gè)球,求取出1個(gè)紅球2個(gè)黑球的概率;

(Ⅱ)若無放回地取3次,每次取1個(gè)球,

①求在前2次都取出紅球的條件下,第3次取出黑球的概率;

②求取出的紅球數(shù)X

的分布列和數(shù)學(xué)期望.答案:(Ⅰ)記“取出1個(gè)紅球2個(gè)黑球”為事件A,根據(jù)題意有P(A)=C13(37)×(47)2=144343;

所以取出1個(gè)紅球2個(gè)黑球的概率是144343.(Ⅱ)①記“在前2次都取出紅球”為事件B,“第3次取出黑球”為事件C,則P(B)=3×27×6=17,P(BC)=3×2×47×6×5=435,所以P(C|B)=P(BC)P(B)=43517=45.所以在前2次都取出紅球的條件下,第3次取出黑球的概率是45.②隨機(jī)變量X

的所有取值為0,1,2,3.P(X=0)=C34?A33A37=435,P(X=1)=C24C13?A33A37=1835,P(X=2)=C14C23?A33A37=1235,P(X=3)=C33?A33A37=135.所以X的分布列為:所以EX=0×435+1×1835+2×1235+3×135=4535=97.27.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內(nèi)的三點(diǎn),設(shè)平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.28.如圖所示,判斷正整數(shù)x是奇數(shù)還是偶數(shù),(1)處應(yīng)填______.答案:根據(jù)程序的功能是判斷正整數(shù)x是奇數(shù)還是偶數(shù),結(jié)合數(shù)的奇偶性的定義,我們可得當(dāng)滿足條件是x是奇數(shù),不滿足條件時(shí)x為偶數(shù)故(1)中應(yīng)填寫r=1故為:r=129.(x3+1xx)10的展開式中的第四項(xiàng)是______.答案:由二項(xiàng)式定理的通項(xiàng)公式可知(x3+1xx)10的展開式中的第四項(xiàng)是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.30.三棱錐P-ABC中,M為BC的中點(diǎn),以為基底,則可表示為()

A.

B.

C.

D.答案:D31.已知x∈R,a=x2+12,b=2-x,c=x2-x+1,試證明a,b,c至少有一個(gè)不小于1.答案:證明:假設(shè)a,b,c均小于1,即a<1,b<1,c<1,則有a+b+c<3而a+b+c=2x2-2x+12+3=2(x-12)2+3≥3,兩者矛盾;故a,b,c至少有一個(gè)不小于1.32.已知F是拋物線C:y2=4x的焦點(diǎn),過F且斜率為1的直線交C于A,B兩點(diǎn).設(shè)|FA|>|FB|,則|FA|與|FB|的比值等于______.答案:設(shè)A(x1,y1)B(x2,y2)由y=x-1y2=4x?x2-6x+1=0?x1=3+22,x2=3-22,(x1>x2)∴由拋物線的定義知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故為:3+2233.用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個(gè)數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81

243=81×3+0

則324與243的最大公約數(shù)為81又135=81×1+54

81=54×1+27

54=27×2+0則81與135的最大公約數(shù)為27所以,三個(gè)數(shù)324、243、135的最大公約數(shù)為27.另法為所求。34.如圖,AB是⊙O的直徑,AD是⊙O的切線,點(diǎn)C在⊙O上,BC∥OD,AB=2,OD=3,則BC的長(zhǎng)為______.答案:∵OD∥BC,∴∠AOD=∠B;∵AD是⊙O的切線,∴BA⊥AD,即∠OAD=∠ACB=90°,∴Rt△AOD∽R(shí)t△CBA,∴BCOA=ABOD,即BC1=23,故BC=23.35.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為x=4cosθy=2sinθ(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,得曲線C2的極坐標(biāo)方程為ρ=2cosθ-4sinθ(ρ>0).

(Ⅰ)化曲線C1、C2的方程為普通方程,并說明它們分別表示什么曲線;

(Ⅱ)設(shè)曲線C1與x軸的一個(gè)交點(diǎn)的坐標(biāo)為P(m,0)(m>0),經(jīng)過點(diǎn)P作曲線C2的切線l,求切線l的方程.答案:(Ⅰ)曲線C1:x216+y24=1;曲線C2:(x-1)2+(y+2)2=5;(3分)曲線C1為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)半軸長(zhǎng)是4,短半軸長(zhǎng)是2的橢圓;曲線C2為圓心為(1,-2),半徑為5的圓(2分)(Ⅱ)曲線C1:x216+y24=1與x軸的交點(diǎn)坐標(biāo)為(-4,0)和(4,0),因?yàn)閙>0,所以點(diǎn)P的坐標(biāo)為(4,0),(2分)顯然切線l的斜率存在,設(shè)為k,則切線l的方程為y=k(x-4),由曲線C2為圓心為(1,-2),半徑為5的圓得|k+2-4k|k2+1=5,解得k=3±102,所以切線l的方程為y=3±102(x-4)(3分)36.對(duì)變量x,y

有觀測(cè)數(shù)據(jù)(x1,y1)(i=1,2,…,10),得散點(diǎn)圖1;對(duì)變量u,v

有觀測(cè)數(shù)據(jù)(v1,vi)(i=1,2,…,10),得散點(diǎn)圖2.下列說法正確的是()

A.變量x

與y

正相關(guān),u

與v

正相關(guān)

B.變量x

與y

負(fù)相關(guān),u

與v

正相關(guān)

C.變量x

與y

正相關(guān),u

與v

負(fù)相關(guān)

D.變量x

與y

負(fù)相關(guān),u

與v

負(fù)相關(guān)答案:B37.已知隨機(jī)變量X滿足D(X)=2,則D(3X+2)=()

A.2

B.8

C.18

D.20答案:C38.如圖,AC、BC分別是直角三角形ABC的兩條直角邊,且AC=3,BC=4,以AC為直徑作圓與斜邊AB交于D,則BD=______.答案:連CD,在Rt△ABC中,因?yàn)锳C、BC的長(zhǎng)分別為3cm、4cm,所以AB=5cm,∵AC為直徑,∴∠ADC=90°,∵∠B公共角,可得Rt△BDC∽R(shí)t△BCA,∴BD=165,故為:16539.如圖所示,O點(diǎn)在△ABC內(nèi)部,D、E分別是AC,BC邊的中點(diǎn),且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()

A.2

B.

C.3

D.

答案:B40.已知點(diǎn)M(1,2),N(1,1),則直線MN的傾斜角是()A.90°B.45°C.135°D.不存在答案:∵點(diǎn)M(1,2),N(1,1),則直線MN的斜率不存在,故直線MN的傾斜角是90°,故選A.41.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ

(1)求△ABC的面積f(θ)與正方形面積g(θ);

(2)當(dāng)θ變化時(shí),求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)

設(shè)正方形的邊長(zhǎng)為x,則BG=xsinθ,由幾何關(guān)系知:∠AGD=θ∴AG=xcosθ

由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4

令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當(dāng)且僅當(dāng)t=1即θ=π4時(shí)成立)∴當(dāng)θ=π4時(shí),f(θ)g(θ)的最小值為94.42.若矩陣滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()

A.24

B.48

C.144

D.288答案:C43.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,F(xiàn)為焦點(diǎn),A,B,C為拋物線上的三點(diǎn),且滿足FA+FB+FC=0,|FA|+|FB|+|FC|=6,則拋物線的方程為______.答案:設(shè)向量FA,F(xiàn)B,F(xiàn)C的坐標(biāo)分別為(x1,y1)(x2,y2)(x3,y3)由FA+FB+FC=0得x1+x2+x3=0∵XA=x1+p2,同理XB=x2+p2,XC=x3+p2∴|FA|=x1+p2+p2=x1+p,同理有|FB|=x2+p2+p2=x2+p,|FC|=x3+p2+p2=x3+p,又|FA|+|FB|+|FC|=6,∴x1+x2+x3+3p=6,∴p=2,∴拋物線方程為y2=4x.故為:y2=4x.44.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A45.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時(shí)間為5.5分鐘的話費(fèi)為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.46.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,

OE∥AD.

(1)求二面角B-AD-F的大??;

(2)求直線BD與EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小為45°(2)直線BD與EF所成的角的余弦值為解析:(1)∵AD與兩圓所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依題意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小為45°;(2)以O(shè)為原點(diǎn),CB、AF、OE所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系(如圖所示),則O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(xiàn)(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=

==-.設(shè)異面直線BD與EF所成角為,則cos=|cos〈,〉|=.即直線BD與EF所成的角的余弦值為.47.已知A(4,1,9),B(10,-1,6),則A,B兩點(diǎn)間距離為______.答案:∵A(4,1,9),B(10,-1,6),∴A,B兩點(diǎn)間距離為|AB|=(10-4)2+(-1-1)2+(6-9)2=7故為:748.4位學(xué)生與2位教師并坐合影留念,針對(duì)下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)

(1)教師必須坐在中間;

(2)教師不能坐在兩端,但要坐在一起;

(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學(xué)生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學(xué)生,有A44種坐法,2位教師坐在一起,將其看成一個(gè)整體,可以交換位置,有2種坐法,將這個(gè)“整體”插在4個(gè)學(xué)生的空位中,又由教師不能坐在兩端,則有3個(gè)空位可選,則共有2A44A31=144種坐法;(3)先排4位學(xué)生,有A44種坐法,教師不能相鄰,將其依次插在4個(gè)學(xué)生的空位中,又由教師不能坐在兩端,則有3個(gè)空位可選,有A32種坐法,則共有A44A32=144種坐法..49.設(shè)曲線C的參數(shù)方程為(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為的點(diǎn)的個(gè)數(shù)為()

A.1

B.2

C.3

D.4答案:B50.若事件與相互獨(dú)立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時(shí)發(fā)生,因?yàn)槎呦嗷オ?dú)立,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率公式得:.第2卷一.綜合題(共50題)1.編程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE

n<=20s=s+tn=n+1t=t*nWENDPRINT

sEND2.設(shè)兩個(gè)正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A3.把方程化為以參數(shù)的參數(shù)方程是(

)A.B.C.D.答案:D解析:,取非零實(shí)數(shù),而A,B,C中的的范圍有各自的限制4.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點(diǎn),則k的值是()

A.

B.-

C.2

D.-2答案:B5.如圖,AB是圓O的直徑,CD是圓O的弦,AB與CD交于E點(diǎn),且AE:EB=3:1、CE:ED=1:1,CD=83,則直徑AB的長(zhǎng)為______.答案:由CE:ED=1:1,CD=83,∴CE=ED=43由相交弦定理可得AE?EB=CE?ED及AE:EB=3:1∴3EB2=43?43=48解得EB=4,AE=12∴AB=AE+EB=16故為:166.已知f(x)=,若f(x0)>1,則x0的取值范圍是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C7.已知a=(2,3),b=(1,2),(a+λb)⊥(a-b),則λ=______.答案:∵a=(2,3),b=(1,2),∴a2=(2,3)?(2,3)=4+9=13,b2=(1,2)?(1,2)=1+4=5∵(a+λb)⊥(a-b)∴(a+λb)?(a-b)=a2-λb2=13-5λ=0∴λ=135故為:1358.橢圓x29+y216=1上一動(dòng)點(diǎn)P到兩焦點(diǎn)距離之和為()A.10B.8C.6D.不確定答案:根據(jù)橢圓的定義,可知?jiǎng)狱c(diǎn)P到兩焦點(diǎn)距離之和為2a=8,故選B.9.在我市新一輪農(nóng)村電網(wǎng)改造升級(jí)過程中,需要選一個(gè)電阻調(diào)試某村某設(shè)備的線路,但調(diào)試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分?jǐn)?shù)法進(jìn)行優(yōu)選試驗(yàn)時(shí),依次將電阻從小到大安排序號(hào),如果第1個(gè)試點(diǎn)與第2個(gè)試點(diǎn)比較,第1個(gè)試點(diǎn)是一個(gè)好點(diǎn),則第3個(gè)試點(diǎn)值的阻值為[

]A、1KΩ

B、1.3KΩ

C、5KΩ

D、1KΩ或5KΩ答案:C10.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0

(1)證明:1a是f(x)的一個(gè)根;(2)試比較1a與c的大小.答案:證明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),f(x)=0的兩個(gè)根x1,x2滿足x1x2=ca,又f(c)=0,不妨設(shè)x1=c∴x2=1a,即1a是f(x)=0的一個(gè)根.(2)假設(shè)1a<c,又1a>0由0<x<c時(shí),f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個(gè)根不相等∴1a≠c,只有1a>c11.為了調(diào)查某產(chǎn)品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機(jī)剔除的個(gè)體數(shù)分別為()

A.3,2

B.2,3

C.2,30

D.30,2答案:A12.隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()

A.

B.0

C.1

D.答案:D13.若直線過點(diǎn)(1,2),(),則此直線的傾斜角是()

A.60°

B.45°

C.30°

D.90°答案:C14.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點(diǎn)D的坐標(biāo).答案:設(shè)D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).15.函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為

______.答案:∵y=ax與y=loga(x+1)具有相同的單調(diào)性.∴f(x)=ax+loga(x+1)在[0,1]上單調(diào),∴f(0)+f(1)=a,即a0+loga1+a1+loga2=a,化簡(jiǎn)得1+loga2=0,解得a=12故為:1216.命題“存在x∈Z使x2+2x+m≤0”的否定是()

A.存在x∈Z使x2+2x+m>0

B.不存在x∈Z使x2+2x+m>0

C.對(duì)任意x∈Z使x2+2x+m≤0

D.對(duì)任意x∈Z使x2+2x+m>0答案:D17.用行列式討論關(guān)于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當(dāng)m≠-1,m≠1時(shí),D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當(dāng)m=-1時(shí),D=0,Dx≠0,方程組無解;…(2分)(3)當(dāng)m=1時(shí),D=Dx=Dy=0,方程組有無窮多組解,此時(shí)方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)18.兩條互相平行的直線分別過點(diǎn)A(6,2)和B(-3,-1),并且各自繞著A,B旋轉(zhuǎn),如果兩條平行直線間的距離為d.

求:

(1)d的變化范圍;

(2)當(dāng)d取最大值時(shí)兩條直線的方程.答案:(1)方法一:①當(dāng)兩條直線的斜率不存在時(shí),即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當(dāng)兩條直線的斜率存在時(shí),設(shè)這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當(dāng)d取最大值時(shí),兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)19.用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()

A.1

B.1+2

C.1+2+3

D.1+2+3+4答案:D20.以下程序輸入2,3,4運(yùn)行后,輸出的結(jié)果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C21.

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F的直線交y軸正半軸于點(diǎn)P,交拋物線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,若,,,則μ的取值范圍是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B22.已知x、y的取值如下表:x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(diǎn)(.x,.y)在回歸直線上,計(jì)算得.x=2,.y=4.5;代入得a=2.6;故為2.6.23.在數(shù)列{an}中,a1=1,an+1=2an2+an(n∈N+),

(1)求a1,a2,a3并猜想數(shù)列{an}的通項(xiàng)公式;

(2)證明上述猜想.答案:(1)a1=1.a(chǎn)2=2a12+a1=22+1=23.a(chǎn)3=2a22+a2=2×232+23=12(2)猜想an=2n+1.證明:當(dāng)n=1時(shí)顯然成立.假設(shè)當(dāng)n=k(k≥1)時(shí)成立,即ak=2k+1則當(dāng)n=k+1時(shí),ak+1=2ak2+ak=2×2k+12+2k+1=42k+4=2(k+1)+1所以an=2n+1.24.將橢圓x2+6y2-2x-12y-13=0按向量a平移,使中心與原點(diǎn)重合,則a的坐標(biāo)是()A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)答案:橢圓方程x2+6y2-2x-12y-13=0變形為:(x-1)2+6(y-1)2=20,則橢圓中心(1,1),即需按a=(-1,-1)平移,中心與原點(diǎn)重合.故選C.25.棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點(diǎn),則直線EF被球O截得的線段長(zhǎng)為()

A.

B.1

C.1+

D.答案:D26.附加題選做題B.(矩陣與變換)

設(shè)矩陣A=m00n,若矩陣A的屬于特征值1的一個(gè)特征向量為10,屬于特征值2的一個(gè)特征向量為01,求實(shí)數(shù)m,n的值.答案:由題意得m00n10=110,m00n01=201,…6分化簡(jiǎn)得m=10?n=00?m=0n=2所以m=1n=2.…10分27.如圖,從圓O外一點(diǎn)P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長(zhǎng)定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.28.如圖,四條直線互相平行,且相鄰兩條平行線的距離均為h,一直正方形的4個(gè)頂點(diǎn)分別在四條直線上,則正方形的面積為()

A.4h2

B.5h2

C.4h2

D.5h2

答案:B29.等邊三角形ABC中,P在線段AB上,且AP=λAB,若CP?AB=PA?PB,則實(shí)數(shù)λ的值是______.答案:設(shè)等邊三角形ABC的邊長(zhǎng)為1.則|AP|=λ|AB|=λ,|PB|=1-λ.(0<λ<1)CP?AB=(CA+AP)?AB=CA?AB+

AP?AB=PA?PB,所以1×1×cos120°+λ×1×cos0°=λ×(1-λ)cos180°.化簡(jiǎn)-12+λ=-λ(1-λ),整理λ2-2λ+12=0,解得λ=2-22(λ=2+22>1舍去)故為:2-2230.已知橢圓的焦點(diǎn)為F1,F(xiàn)2,A在橢圓上,B在F1A的延長(zhǎng)線上,且|AB|=|AF2|,則B點(diǎn)的軌跡形狀為()

A.橢圓

B.雙曲線

C.圓

D.兩條平行線答案:C31.①點(diǎn)P在△ABC所在的平面內(nèi),且②點(diǎn)P為△ABC內(nèi)的一點(diǎn),且使得取得最小值;③點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn),且,上述三個(gè)點(diǎn)P中,是△ABC的重心的有()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:D32.已知二項(xiàng)分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項(xiàng)分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:133.四支足球隊(duì)爭(zhēng)奪冠、亞軍,不同的結(jié)果有()

A.8種

B.10種

C.12種

D.16種答案:C34.如圖,中心均為原點(diǎn)O的雙曲線與橢圓有公共焦點(diǎn),M,N是雙曲線的兩頂點(diǎn).若M,O,N將橢圓長(zhǎng)軸四等分,則雙曲線與橢圓的離心率的比值是()A.3B.2C.3D.2答案:∵M(jìn),N是雙曲線的兩頂點(diǎn),M,O,N將橢圓長(zhǎng)軸四等分∴橢圓的長(zhǎng)軸長(zhǎng)是雙曲線實(shí)軸長(zhǎng)的2倍∵雙曲線與橢圓有公共焦點(diǎn),∴雙曲線與橢圓的離心率的比值是2故選B.35.抽樣方法有()A.隨機(jī)抽樣、系統(tǒng)抽樣和分層抽樣B.隨機(jī)數(shù)法、抽簽法和分層抽樣法C.簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣D.系統(tǒng)抽樣、分層抽樣和隨機(jī)數(shù)法答案:我們常用的抽樣方法有:簡(jiǎn)單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣,而抽簽法和隨機(jī)數(shù)法,只是簡(jiǎn)單隨機(jī)抽樣的兩種不同抽取方法故選C36.設(shè)P、Q為兩個(gè)非空實(shí)數(shù)集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個(gè)數(shù)是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個(gè)數(shù),b可以為1,2,6三個(gè)數(shù),∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個(gè)元素.故為8.37.設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:438.若復(fù)數(shù)z=(m2-1)+(m+1)i為純虛數(shù),則實(shí)數(shù)m的值等于______.答案:復(fù)數(shù)z=(m2-1)+(m+1)i當(dāng)z是純虛數(shù)時(shí),必有:m2-1=0且m+1≠0解得,m=1.故為1.39.拋擲3顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點(diǎn)數(shù)和為8的事件包含了向上的點(diǎn)的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點(diǎn)數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點(diǎn)數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點(diǎn)數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點(diǎn)數(shù)和為8的事件的概率是15216=572故為:572.40.設(shè)函數(shù)f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故選B.41.已知點(diǎn)P在曲線C1:x216-y29=1上,點(diǎn)Q在曲線C2:(x-5)2+y2=1上,點(diǎn)R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由雙曲線的知識(shí)可知:C1x216-y29=1的兩個(gè)焦點(diǎn)分別是F1(-5,0)與F2(5,0),且|PF1|+|PF2|=8而這兩點(diǎn)正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值為:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故選C42.不等式|x+3|-|x-1|≤a2-3a對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為()

A.(-∞,-1]∪[4,+∞)

B.(-∞,-2]∪[5,+∞)

C.[1,2]

D.(-∞,1]∪[2,+∞)答案:A43.拋擲兩枚骰子各一次,記第一枚骰子擲出的點(diǎn)數(shù)與第二枚骰子擲出的點(diǎn)數(shù)的差為X,則“X>4”表示試驗(yàn)的結(jié)果為()

A.第一枚為5點(diǎn),第二枚為1點(diǎn)

B.第一枚大于4點(diǎn),第二枚也大于4點(diǎn)

C.第一枚為6點(diǎn),第二枚為1點(diǎn)

D.第一枚為4點(diǎn),第二枚為1點(diǎn)答案:C44.若矩陣滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()

A.24

B.48

C.144

D.288答案:C45.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點(diǎn)到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為b>9;故為:b>9.46.

點(diǎn)M分有向線段的比為λ,已知點(diǎn)M1(1,5),M2(2,3),λ=-2,則點(diǎn)M的坐標(biāo)為()

A.(3,8)

B.(1,3)

C.(3,1)

D.(-3,-1)答案:C47.設(shè)m∈R,向量=(1,m).若||=2,則m等于()

A.1

B.

C.±1

D.±答案:D48.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結(jié)果用數(shù)值表示).答案:把AB看成一個(gè)整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數(shù)A77所以概率為A22A44A25A77=421故為:421.49.直線l1到l2的角為α,直線l2到l1的角為β,則cos=()

A.

B.

C.0

D.1答案:A50.已知x與y之間的一組數(shù)據(jù):

x0123y1357則y與x的線性回歸方程為y=bx+a必過點(diǎn)______.答案:∵.x=0+1+2+34=1.5,.y=1+3+5+74=4,∴本組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,4),∴y與x的線性回歸方程為y=bx+a必過點(diǎn)(1.5,4)故為:(1.5,4)第3卷一.綜合題(共50題)1.已知二項(xiàng)分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項(xiàng)分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:12.設(shè)等比數(shù)列{an}的首項(xiàng)為a1,公比為q,則“a1<0且0<q<1”是“對(duì)于任意n∈N*都有an+1>an”的

()

A.充分不必要條件

B.必要不充分條件

C.充分必要條件

D.既不充分又不必要條件答案:A3.已知矩陣A將點(diǎn)(1,0)變換為(2,3),且屬于特征值3的一個(gè)特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設(shè)A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.

7分(2)A=2130的特征多項(xiàng)式為f(λ)=.λ-2-1-3λ.=

-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時(shí),α1=11,λ2=-1時(shí),α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.4.一名同學(xué)先后投擲一枚骰子兩次,第一次向上的點(diǎn)數(shù)記為x,第二次向上的點(diǎn)數(shù)記為y,在直角坐標(biāo)系xOy中,以(x,y)為坐標(biāo)的點(diǎn)落在直線2x+y=8上的概率為()A.16B.112C.536D.19答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的事件是先后擲兩次骰子,共有6×6=36種結(jié)果,滿足條件的事件是(x,y)為坐標(biāo)的點(diǎn)落在直線2x+y=8上,當(dāng)x=1,y=6;x=2,y=4;x=3,y=2,共有3種結(jié)果,∴根據(jù)古典概型的概率公式得到P=336=112,故選B.5.某重點(diǎn)高中高二歷史會(huì)考前,進(jìn)行了五次歷史會(huì)考模擬考試,某同學(xué)在這五次考試中成績(jī)?nèi)缦拢?0,90,93,94,93,則該同學(xué)的這五次成績(jī)的平均值和方差分別為()

A.92,2

B.92,2.8

C.93,2

D.93,2.8答案:B6.已知函數(shù)f(x)=2x+a的圖象不過第三象限,則常數(shù)a的取值范圍是

______.答案:函數(shù)f(x)=2x+a的圖象可根據(jù)指數(shù)函數(shù)f(x)=2x的圖象向上(a>0)或者向下(a<0)平移|a|個(gè)單位得到,若函數(shù)f(x)=2x+a的圖象不過第三象限,則只能向上平移或者不平移,因此,a的取值范圍是a≥0.故為:a≥0.7.已知兩直線的方程分別為l1:x+ay+b=0,l2:x+cy+d=0,它們?cè)谧鴺?biāo)系中的位置如圖所示()

A.b>0,d<0,a<c

B.b>0,d<0,a>c

C.b<0,d>0,a<c

D.b<0,d>0,a>c

答案:D8.設(shè)a、b、c均為正數(shù).求證:≥.答案:證明略解析:證明

方法一

∵+3=="(a+b+c)"=[(a+b)+(a+c)+(b+c)]≥

(·+·+·)2=.∴+≥.方法二

令,則∴左邊=≥=.∴原不等式成立.9.在平面直角坐標(biāo)系中,雙曲線Γ的中心在原點(diǎn),它的一個(gè)焦點(diǎn)坐標(biāo)為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線的方向向量.任取雙曲線Γ上的點(diǎn)P,若OP=ae1+be2(a、b∈R),則a、b滿足的一個(gè)等式是______.答案:因?yàn)閑1=(2,1)、e2=(2,-1)是漸進(jìn)線方向向量,所以雙曲線漸近線方程為y=±12x,又c=5,∴a=2,b=1雙曲線方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡(jiǎn)得4ab=1.故為4ab=1.10.已知函數(shù)y=f(n),滿足f(1)=2,且f(n+1)=3f(n),n∈N+,則

f(3)的值為______.答案:∵f(1)=2,且f(n+1)=3f(n),n∈N+,∴f(2)=3f(1)=6,f(3)=f(2+1)=3f(2)=18,故為18.11.設(shè)a,b,c都是正數(shù),求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.12.有一批數(shù)量很大的產(chǎn)品,其中次品率是20%,對(duì)這批產(chǎn)品進(jìn)行抽查,每次抽出一件,如果抽出次品則抽查終止,否則繼續(xù)抽查,直到抽出次品,但抽查次數(shù)最多不超過9次,那么抽查次數(shù)為9次的概率為(

A.0.89

B.0.88×0.2

C.0.88

D.0.28×0.8答案:C13.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點(diǎn),則a的值是(

A.-2

B.-1

C.0

D.1答案:B14.下列各組向量中不平行的是()A.a(chǎn)=(1,2,-2),b=(-2,-4,4)B.c=(1,0,0),d=(-3,0,0)C.e=(2,3,0),f=(0,0,0)D.g=(-2,3,5),h=(16,24,40)答案:選項(xiàng)A中,b=-2a?a∥b;選項(xiàng)B中有:d=-3c?d∥c,選項(xiàng)C中零向量與任意向量平行,選項(xiàng)D,事實(shí)上不存在任何一個(gè)實(shí)數(shù)λ,使得g=λh,即:(16,24,40)=λ(16,24,40).故應(yīng)選:D15.(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長(zhǎng)為______.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時(shí),x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時(shí),有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時(shí),有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.16.無論m,n取何實(shí)數(shù)值,直線(3m-n)x+(m+2n)y-n=0都過定點(diǎn)P,則P點(diǎn)坐標(biāo)為

A.(-1,3)

B.

C.

D.答案:D17.現(xiàn)有10個(gè)保送上大學(xué)的名額,分配給7所學(xué)校,每校至少有1個(gè)名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個(gè)名額,分配給7所學(xué)校,每校至少有1個(gè)名額,可以轉(zhuǎn)化為10個(gè)元素之間有9個(gè)間隔,要求分成7份,每份不空;相當(dāng)于用6塊檔板插在9個(gè)間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.18.解不等式:2<|3x-1|≤3.答案:由原不等式得-3≤3x-1<-2或2<3x-1≤3,∴-2≤3x<-1或3<3x≤4,∴-23≤x<-13或1<x≤43,∴不等式的解集是{x|-23≤x<-13或1<x≤43}.19.已知圓柱的軸截面周長(zhǎng)為6,體積為V,則下列關(guān)系式總成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:設(shè)圓柱的底面半徑為r,高為h,由題意得:4r+2h=6,即2r+h=3,∴體積為V=πr2h≤π[13(r+r+h)]2=π×(33)2=π當(dāng)且僅當(dāng)r=h時(shí)取等號(hào),由此可得V≤π恒成立故選:B20.來自中國、英國、瑞典的乒乓球裁判各兩名,執(zhí)行北京奧運(yùn)會(huì)的一號(hào)、二號(hào)和三號(hào)場(chǎng)地的乒乓球裁判工作,每個(gè)場(chǎng)地由兩名來自不同國家的裁判組成,則不同的安排方案總數(shù)有()

A.12種

B.48種

C.90種

D.96種答案:B21.已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:200622.紙制的正方體的六個(gè)面根據(jù)其方位分別標(biāo)記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開、外面朝上展平,得到右側(cè)的平面圖形,則標(biāo)“△”的面的方位()

A.南

B.北

C.西

D.下

答案:B23.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(

)A.B.C.且D.且答案:D解析:若,則,則.若,則對(duì)于二次函數(shù),由可得結(jié)論.24.一個(gè)底面是正三角形的三棱柱的側(cè)視圖如圖所示,則該幾何體的側(cè)面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長(zhǎng)為2,高為1的正三棱柱,側(cè)面積為3×2×1=6,故為:B.25.設(shè)雙曲線x2a2-y2b2=1(a>b>0)的半焦距為c,直線l過(a,0),(0,b)兩點(diǎn),已知原點(diǎn)到直線l的距離為34c,則雙曲線的離心率為______.答案:∵直線l過(a,0),(0,b)兩點(diǎn),∴直線l的方程為:xa+yb=1,即bx+ay-ab=0,∵原點(diǎn)到直線l的距離為34c,∴|ab|a2+b2=3c4,又c2=a2+b2,∴3e4-16e2+16=0,∴e2=4,或e2=43.∵a>b>0,∴離心率為e=2或e=233;故為2或233.26.設(shè)a,b,c是正實(shí)數(shù),求證:aabbcc≥(abc)a+b+c3.答案:證明:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc.據(jù)排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.27.三棱錐P-ABC中,M為BC的中點(diǎn),以為基底,則可表示為()

A.

B.

C.

D.答案:D28.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()

A.

B.

C.

D.答案:D29.某同學(xué)參加科普知識(shí)競(jìng)賽,需回答三個(gè)問題,競(jìng)賽規(guī)則規(guī)定:答對(duì)第一、二、三個(gè)問題分別得100分、100分、200分,答錯(cuò)得0分,假設(shè)這位同學(xué)答對(duì)第一、二、三個(gè)問題的概率分別為0.8、0.7、0.6,且各題答對(duì)與否相互之間沒有影響,則這名同學(xué)得300分的概率為

;這名同學(xué)至少得300分的概率為

.答案:0.228;0.564解析:得300分可能是答對(duì)第一、三題或第二、三題,其概率為0.8×0.3×0.6+0.2×0.7×0.6=0.228;答對(duì)4道題可得400分,其概率為0.8×0.7×0.6=0.336,所以至少得300分的概率為0.228+0.336=0.564。30.在平面直角坐標(biāo)系xOy中,設(shè)P(x,y)是橢圓上的一個(gè)動(dòng)點(diǎn),則S=x+y的最大值是()

A.1

B.2

C.3

D.4答案:B31.利用獨(dú)立性檢驗(yàn)對(duì)兩個(gè)分類變量是否有關(guān)系進(jìn)行研究時(shí),若有99.5%的把握說事件A和B有關(guān)系,則具體計(jì)算出的數(shù)據(jù)應(yīng)該是()

A.K2≥6.635

B.K2<6.635

C.K2≥7.879

D.K2<7.879答案:C32.某程序圖如圖所示,該程序運(yùn)行后輸出的結(jié)果是______.答案:由圖知運(yùn)算規(guī)則是對(duì)S=2S,故第一次進(jìn)入循環(huán)體后S=21,第二次進(jìn)入循環(huán)體后S=22=4,第三次進(jìn)入循環(huán)體后S=24=16,第四次進(jìn)入循環(huán)體后S=216>2012,退出循環(huán).故該程序運(yùn)行后輸出的結(jié)果是:k=4+1=5.故為:533.某工廠生產(chǎn)A,B,C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A型號(hào)產(chǎn)品有16件,則此樣本的容量為()

A.40

B.80

C.160

D.320答案:B34.①某尋呼臺(tái)一小時(shí)內(nèi)收到的尋呼次數(shù)X;

②長(zhǎng)江上某水文站觀察到一天中的水位X;

③某超市一天中的顧客量X.

其中的X是連續(xù)型隨機(jī)變量的是()

A.①

B.②

C.③

D.①②③答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論