2023年南昌影視傳播職業(yè)學院高職單招(數學)試題庫含答案解析_第1頁
2023年南昌影視傳播職業(yè)學院高職單招(數學)試題庫含答案解析_第2頁
2023年南昌影視傳播職業(yè)學院高職單招(數學)試題庫含答案解析_第3頁
2023年南昌影視傳播職業(yè)學院高職單招(數學)試題庫含答案解析_第4頁
2023年南昌影視傳播職業(yè)學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年南昌影視傳播職業(yè)學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.如果輸入2,那么執(zhí)行圖中算法的結果是()A.輸出2B.輸出3C.輸出4D.程序出錯,輸不出任何結果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.2.已知有如下兩段程序:

問:程序1運行的結果為______.程序2運行的結果為______.

答案:程序1是計數變量i=21開始,不滿足i≤20,終止循環(huán),累加變量sum=0,這個程序計算的結果:sum=0;程序2計數變量i=21,開始進入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開始,這個程序計算的是sum=21.故為:0;21.3.如圖,△PAB所在的平面α和梯形ABCD所在的平面β互相垂直,且AD⊥α,AD=4,BC=8,AB=6,若tan∠ADP+2tan∠BCP=10,則點P在平面α內的軌跡是()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由AD⊥α,可得AD⊥AP,tan∠ADP=APAD,四邊形ABCD是梯形,則AD∥BC,可得BC⊥α,BC⊥BP,則tan∠BCP=BPBC,又由tan∠ADP+2tan∠BCP=10,且AD=4,BC=8,可得AP+BP=40,又由AB=6,則AP+BP>AB,故P在平面α內的軌跡是橢圓的一部分,故選B.4.設集合A={(x,y)|x+y=6,x∈N,y∈N},使用列舉法表示集合A.答案:集合A中的元素是點,點的橫坐標,縱坐標都是自然數,且滿足條件x+y=6.所以用列舉法表示為:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.5.規(guī)定運算.abcd.=ad-bc,則.1i-i2.=______.答案:根據題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.6.下列關于算法的說法中正確的個數是()

①求解某一類問題的算法是唯一的;

②算法必須在有限步操作之后停止;

③算法的每一步操作必須是明確的,不能有歧義或模糊;

④算法執(zhí)行后一定產生確定的結果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結果明確性,②④是正確的.對于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關于算法的說法中正確的個數是3.故選C.7.正方體的表面積與其外接球表面積的比為()A.3:πB.2:πC.1:2πD.1:3π答案:設正方體的棱長為a,不妨設a=1,正方體外接球的半徑為R,則由正方體的體對角線的長就是外接球的直徑的大小可知:2R=3a,即R=3a2=32?1=32;所以外接球的表面積為:S球=4πR2=3π.則正方體的表面積與其外接球表面積的比為:6:3π=2:π.故選B.8.袋子A和袋子B均裝有紅球和白球,從A中摸出一個紅球的概率是13,從B中摸出一個紅球的概率是P.

(1)從A中有放回地摸球,每次摸出一個,共摸5次,求恰好有3次摸到紅球的概率;

(2)若A、B兩個袋子中的總球數之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率為25,求P的值.答案:(1)每次從A中摸一個紅球的概率是13,摸不到紅球的概率為23,根據獨立重復試驗的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設A中有m個球,A、B兩個袋子中的球數之比為1:2,則B中有2m個球,∵將A、B中的球裝在一起后,從中摸出一個紅球的概率是25,∴13m+2mp3m=25,解得p=1330.9.拋物線y2=4x的焦點坐標為()

A.(0,1)

B.(1,0)

C.(0,2)

D.(2,0)答案:B10.2007年10月24日18時05分,在西昌衛(wèi)星發(fā)射中心,“嫦娥一號”衛(wèi)星順利升空,24分鐘后,星箭成功分離,衛(wèi)星首次進入以地心為焦點的橢圓形調相軌道,衛(wèi)星近地點為約200公里,遠地點為約51000公里.設地球的半經為R,則衛(wèi)星軌道的離心率為______(結果用R的式子表示)答案:由題意衛(wèi)星進入以地心為焦點的橢圓形調相軌道,衛(wèi)星近地點為約200公里,遠地點為約51000公里.設地球的半經為R,易知,a=25600+R,c=25400,則衛(wèi)星軌道的離心率e=2540025600+R.故為:2540025600+R.11.下列給變量賦值的語句正確的是()

A.5=a

B.a+2=a

C.a=b=4

D.a=2*a答案:D12.已知隨機變量ξ的數學期望Eξ=0.05且η=5ξ+1,則Eη等于()

A.1.15

B.1.25

C.0.75

D.2.5答案:B13.直三棱柱ABC-A1B1C1中,若CA=a,CB=b,CC1=c,則A1B=()A.a+b-cB.a-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-c+b-a故選D.14.假設要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進行實驗.利用隨機數表抽取種子時,先將850顆種子按001,002,…,850進行編號,如果從隨機數表第8行第2列的數3開始向右讀,請你依次寫出最先檢測的4顆種子的編號______,______,______,______.

(下面摘取了隨機數表第7行至第9行)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

83

92

12

06

76

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38

15

51

00

13

42

99

66

02

79

54.答案:第8行第2列的數3開始向右讀第一個小于850的數字是301,第二個數字是637,也符合題意,第三個數字是859,大于850,舍去,第四個數字是169,符合題意,第五個數字是555,符合題意,故為:301,637,169,55515.某校有初中學生1200人,高中學生900人,教師120人,現用分層抽樣方法從所有師生中抽取一個容量為n的樣本進行調查,如果從高中學生中抽取60人,那么n=______.答案:每個個體被抽到的概率等于60900=115.故n=(1200+900+120)×115=1220×115=148,故為:148.16.已知命題p:所有有理數都是實數,命題q:正數的對數都是負數,則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.17.正多面體只有______種,分別為______.答案:正多面體只有5種,分別為正四面體、正六面體、正八面體、正十二面體、正二十面體.故為:5,正四面體、正六面體、正八面體、正十二面體、正二十面體.18.在空間中,有如下命題:

①互相平行的兩條直線在同一個平面內的射影必然是互相平行的兩條直線;

②若平面α∥平面β,則平面α內任意一條直線m∥平面β;

③若平面α與平面β的交線為m,平面α內的直線n⊥直線m,則直線n⊥平面β.

其中正確命題的個數為()個.

A.0

B.1

C.2

D.3答案:B19.已知,棱長都相等的正三棱錐內接于一個球,某學生畫出四個過球心的平面截球與正三棱錐所得的圖形,如下圖所示,則

A、以上四個圖形都是正確的

B、只有(2)(4)是正確的

C、只有(4)是錯誤的

D、只有(1)(2)是正確的答案:C20.若不等式的解集,則實數=___________.答案:-421.已知變量a,b已被賦值,要交換a、b的值,應采用的算法是()

A.a=b,b=a

B.a=c,b=a,c=b

C.a=c,b=a,c=a

D.c=a,a=b,b=c答案:D22.△ABC中,A(1,2),B(3,1),重心G(3,2),則C點坐標為______.答案:設點C(x,y)由重心坐標公式知3×3=1+3+x,6=2+1+y解得x=5,y=3故點C的坐標為(5,3)故為(5,3)23.以下命題:

①兩個共線向量是指在同一直線上的兩個向量;

②共線的兩個向量互相平行;

③共面的三個向量是指在同一平面內的三個向量;

④共面的三個向量是指平行于同一平面的三個向量.

其中正確命題的序號是______.答案:解①根據共面與共線向量的定義可知①錯誤.②根據共線向量的定義可知②正確.③根據共面向量的定義可知③錯誤.④根據共面向量的定義可知④正確.故為:②④.24.已知隨機變量X的分布列是:(

)

X

4

a

9

10

P

0.3

0.1

b

0.2

且EX=7.5,則a的值為()

A.5

B.6

C.7

D.8答案:C25.已知某試驗范圍為[10,90],若用分數法進行4次優(yōu)選試驗,則第二次試點可以是(

)。答案:40或60(不唯一)26.設a=(-1,1),b=(x,3),c=(5,y),d=(8,6),且b∥d,(4a+d)⊥c.

(1)求b和c;

(2)求c在a方向上的射影;

(3)求λ1和λ2,使c=λ1a+λ2b.答案:(1)∵b∥d,∴6x-24=0.∴x=4.∴b=(4,3).∵4a+d=(4,10),(4a+d

)⊥c,∴5×4+10y=0.∴y=-2.∴c=(5,-2).(2)cos<a,c>=a?c|a|

|c|=-5-22?29=-75858,∴c在a方向上的投影為|c|cos<a,c>=-722.(3)∵c=λ1a+λ2b,∴5=-λ1+4λ2-2=λ1+3λ2,解得λ1=-237,λ2=37.27.有50件產品編號從1到50,現在從中抽取抽取5件檢驗,用系統(tǒng)抽樣確定所抽取的編號為()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D28.從甲、乙、丙、丁四人中任選兩名代表,甲被選中的概率為

______.答案:由題意:甲、乙、丙、丁四人中任選兩名代表,共有六種情況:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每種情況出現的可能性相等,所以甲被選中的概率為12.故為:12.29.若一元二次方程kx2-4x-5=0

有兩個不相等實數根,則k

的取值范圍是______.答案:∵kx2-4x-5=0有兩個不相等的實數根,∴△=16+20k>0,且k≠0,解得,k>-45且k≠0;故是:k>-45且k≠0.30.設某批電子手表正品率為,次品率為,現對該批電子手表進行測試,設第X次首次測到正品,則P(X=3)等于()

A.

B.

C.

D.答案:C31.過直線x+y-22=0上點P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,則點P的坐標是______.答案:根據題意畫出相應的圖形,如圖所示:直線PA和PB為過點P的兩條切線,且∠APB=60°,設P的坐標為(a,b),連接OP,OA,OB,∴OA⊥AP,OB⊥BP,PO平分∠APB,∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,又圓x2+y2=1,即圓心坐標為(0,0),半徑r=1,∴OA=OB=1,∴OP=2AO=2BO=2,∴a2+b2=2,即a2+b2=4①,又P在直線x+y-22=0上,∴a+b-22=0,即a+b=22②,聯立①②解得:a=b=2,則P的坐標為(2,2).故為:(2,2)32.設O是平行四邊形ABCD的兩條對角線AC與BD的交點,對于下列向量組:①AD與AB;②DA與BC;③CA與DC;④OD與OB.其中能作為一組基底的是______(只填寫序號).答案:解析:由于①AD與AB不共線,③CA與DC不共線,所以都可以作為基底.②DA與BC共線,④OD與OB共線,不能作為基底.故為:①③.33.圓x2+y2=1上的點到直線x=2的距離的最大值是

______.答案:根據題意,圓上點到直線距離最大值為:半徑+圓心到直線的距離.而根據圓x2+y2=1圓心為(0,0),半徑為1∴dmax=1+2=3故為:334.一名同學先后投擲一枚骰子兩次,第一次向上的點數記為x,第二次向上的點數記為y,在直角坐標系xOy中,以(x,y)為坐標的點落在直線2x+y=8上的概率為()A.16B.112C.536D.19答案:由題意知本題是一個古典概型,∵試驗發(fā)生包含的事件是先后擲兩次骰子,共有6×6=36種結果,滿足條件的事件是(x,y)為坐標的點落在直線2x+y=8上,當x=1,y=6;x=2,y=4;x=3,y=2,共有3種結果,∴根據古典概型的概率公式得到P=336=112,故選B.35.將一個總體分為A、B、C三層,其個體數之比為5:3:2,若用分層抽樣的方法抽取容量為180的樣本,則應從C中抽取樣本的個數為______個.答案:由分層抽樣的定義可得應從B中抽取的個體數為180×25+3+2=36,故為:36.36.已知向量與的夾角為120°,若向量,且,則=()

A.2

B.

C.

D.答案:C37.不等式log12(x2-2x-15)>log12(x+13)的解集為______.答案:滿足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,則不等式log12(x2-2x-15)>log12(x+13)的解集為(-4,-3)∪(5,7)故為:(-4,-3)∪(5,7).38.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______

種(以數字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:48039.圓錐的側面展開圖是一個半徑長為4的半圓,則此圓錐的底面半徑為

______.答案:設圓錐的底面半徑為R,則由題意得,2πR=π×4,即R=2,故為:2.40.如圖,AB是半圓O的直徑,C是AB延長線上一點,CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.41.若拋物線y2=2px(p>0)的焦點與雙曲線的右焦點重合,則p的值為()

A.2

B.4

C.8

D.4答案:C42.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個動點,求PM的最小值.答案:過C作CM⊥AB,連接PM,因為PC⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.43.對某種電子元件進行壽命跟蹤調查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數量與壽命在300~600小時的電子元件的數量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數量與壽命在300~600小時的電子元件的數量的比大約是0.2:0.8=14故選C44.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.45.若將方程|(x-4)2+y2-(x+4)2+y2|=6化簡為x2a2-y2b2=1的形式,則a2-b2=______.答案:方程|(x-4)2+y2-(x+4)2+y2|=6,表示點(x,y)到(4,0),(-4,0)兩點距離差的絕對值為6,∴軌跡為以(4,0),(-4,0)為焦點的雙曲線,方程為x29-y27=1∴a2-b2=2故為:246.已知f(x)=,則不等式xf(x)+x≤2的解集是(

)。答案:{x|x≤1}47.在(1+2x)5的展開式中,x2的系數等于______.(用數字作答)答案:由于(1+2x)5的展開式的通項公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數等于C25×22=40,故為40.48.△OAB中,OA=a,OB=b,OP=p,若p=t(a|a|+b|b|),t∈R,則點P一定在()A.∠AOB平分線所在直線上B.線段AB中垂線上C.AB邊所在直線上D.AB邊的中線上答案:∵△OAB中,OA=a,OB=b,OP=p,p=t(a|a|+b|b|),t∈R,∵a|a|

和b|b|

是△OAB中邊OA、OB上的單位向量,∴(a|a|+b|b|

)在∠AOB平分線線上,∴t(a|a|+b|b|

)在∠AOB平分線線上,∴則點P一定在∠AOB平分線線上,故選A.49.對某種花卉的開放花期追蹤調查,調查情況如表:

花期(天)11~1314~1617~1920~22個數20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個,花期平均為15天的有40個,花期平均為18天的有30個,花期平均為21天的有10個,∴這種花卉的評價花期是12×20+15×40+18×30+21×10100=16,故為:1650.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因為10=2r+l≥22rl,所以rl≤252,所以s≤254故選B第2卷一.綜合題(共50題)1.如圖,設P,Q為△ABC內的兩點,且AP=25AB+15AC,AQ=23AB+14AC,則△ABP的面積與△ABQ的面積之比為______.答案:設AM=25AB,AN=15AC則AP=AM+AN由平行四邊形法則知NP∥AB

所以△ABP的面積△ABC的面積=|AN||AC|=15同理△ABQ的面積△ABC的面積=14故△ABP的面積△ABQ的面積=45故為:452.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為73.(選修4-4:坐標系與參數方程)

在直角坐標系xoy中,直線l的參數方程為x=3-22ty=5+22t(t為參數),在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.

(Ⅰ)求圓C的直角坐標方程;

(Ⅱ)設圓C與直線l交于點A、B,若點P的坐標為(3,5),求|PA|+|PB|.答案:(Ⅰ)∵圓C的方程為ρ=25sinθ.∴x2+y2-25y=0,即圓C的直角坐標方程:x2+(y-5)2=5.(Ⅱ)(3-22t)2+(22t)2=5,即t2-32t+4=0,由于△=(32)2-4×4=2>0,故可設t1,t2是上述方程的兩實根,所以t1+t2=32t1t2=4,又直線l過點P(3,5),故|PA|+|PB|=|t1|+|t2|=t1+t2=324.直線l1:x+3=0與直線l2:x+3y-1=0的夾角的大小為______.答案:由于直線l1:x+3=0的斜率不存在,故它的傾斜角為90°,直線l2:x+3y-1=0的斜率為-33,故它的傾斜角為150>,故這兩條直線的夾角為60°,故為60°.5.設函數f(x)的定義域為R,如果對任意的實數x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對任意的實數x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:326.平面內有n條直線,其中無任何兩條平行,也無任何三條共點,求證:這n條直線把平面分割成12(n2+n+2)塊.答案:證明:(1)當n=1時,1條直線把平面分成2塊,又12(12+1+2)=2,命題成立.(2)假設n=k時,k≥1命題成立,即k條滿足題設的直線把平面分成12(k2+k+2)塊,那么當n=k+1時,第k+1條直線被k條直線分成k+1段,每段把它們所在的平面塊又分成了2塊,因此,增加了k+1個平面塊.所以k+1條直線把平面分成了12(k2+k+2)+k+1=12[(k+1)2+(k+1)+2]塊,這說明當n=k+1時,命題也成立.由(1)(2)知,對一切n∈N*,命題都成立.7.(1)在數軸上求一點的坐標,使它到點A(9)與到點B(-15)的距離相等;

(2)在數軸上求一點的坐標,使它到點A(3)的距離是它到點B(-9)的距離的2倍.答案:(1)設該點為M(x),根據題意,得A、M兩點間的距離為d(A,M)=|x-9|,B、M兩點間的距離為d(M,B)=|-15-x|,結合題意,可得|x-9|=|-15-x|,∴x-9=15+x或x-9=-15-x,解之得x=-3,得M的坐標為-3故所求點的坐標為-3.(2)設該點為N(x'),則A、N兩點間的距離為d(A,N)=|x'-3|,B、N兩點間的距離為d(N,B)=|-9-x'|,根據題意有|x'-3|=2|9+x'|,∴x'-3=18+2x'或x'-3=-18-2x',解之得x'=-21,或x'=-5.故所求點的坐標是-21或-5.8.已知函數f(x)=x21+x2.

(1)求f(2)與f(12),f(3)與f(13);

(2)由(1)中求得結果,你能發(fā)現f(x)與f(1x)有什么關系?并證明你的結論;

(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分9.袋中裝著標有數字1,2,3,4,5的小球各2個,現從袋中任意取出3個小球,假設每個小球被取出的可能性都相等.

(Ⅰ)求取出的3個小球上的數字分別為1,2,3的概率;

(Ⅱ)求取出的3個小球上的數字恰有2個相同的概率;

(Ⅲ)用X表示取出的3個小球上的最大數字,求P(X≥4)的值.答案:(I)記“取出的3個小球上的數字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個小球上的數字恰有2個相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個小球上的最大數字,則X≥4包含取出的3個小球上的最大數字為4或5兩種情況,當取出的3個小球上的最大數字為4時,P(X=4)=C12C26+C22C16C310=36120=310;當取出的3個小球上的最大數字為5時,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.10.已知兩點A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A11.如圖是《集合》的知識結構圖,如果要加入“子集”,那么應該放在()

A.“集合”的下位

B.“含義與表示”的下位

C.“基本關系”的下位

D.“基本運算”的下位

答案:C12.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為______.答案:連接AC、BC,則∠ACD=∠ABC,又因為∠ADC=∠ACB=90°,所以△ACD~△ACB,所以ADAC=ACAB,解得AC=23.故填:23.13.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1514.引入復數后,數系的結構圖為()

A.

B.

C.

D.

答案:A15.已知直線l的參數方程為x=3+12ty=7+32t(t為參數),曲線C的參數方程為x=4cosθy=4sinθ(θ為參數).

(I)將曲線C的參數方程轉化為普通方程;

(II)若直線l與曲線C相交于A、B兩點,試求線段AB的長.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.16.證明不等式1+12+13+…+1n<2n(n∈N*)答案:證法一:(1)當n=1時,不等式左端=1,右端=2,所以不等式成立;(2)假設n=k(k≥1)時,不等式成立,即1+12+13+…+1k<2k,則1+12+13+…+1k+1<2k+1k+1=2k(k+1)+1k+1<k+(k+1)+1k+1=2k+1,∴當n=k+1時,不等式也成立.綜合(1)、(2)得:當n∈N*時,都有1+12+13+…+1n<2n.證法二:設f(n)=2n-(1+12+13+…+1n),那么對任意k∈N*

都有:f(k+1)-f(k)=2(k+1-k)-1k+1=1k+1[2(k+1)-2k(k+1)-1]=1k+1?[(k+1)-2k(k+1)+k]=(k+1-k)2k+1>0∴f(k+1)>f(k)因此,對任意n∈N*

都有f(n)>f(n-1)>…>f(1)=1>0,∴1+12+13+…+1n<2n.17.

選修1:幾何證明選講

如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;

(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.18.已知雙曲線的兩漸近線方程為y=±32x,一個焦點坐標為(0,-26),

(1)求此雙曲線方程;

(2)寫出雙曲線的準線方程和準線間的距離.答案:(1)由題意得,c=26,ba=32,26=a2+b2,∴a2=18,b2=8,故該雙曲線的標準方程為y218-x28=1.(2)由(1)得,雙曲線的準線方程為y=±1826x;準線間的距離為2a2c=2×1826=182613.19.某簡單幾何體的三視圖如圖所示,其正視圖.側視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個三棱錐,設出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.20.若向量n與直線l垂直,則稱向量n為直線l的法向量.直線x+2y+3=0的一個法向量為()

A.(2,-1)

B.(1,-2)

C.(2,1)

D.(1,2)答案:D21.(參數方程與極坐標選講)在極坐標系中,圓C的極坐標方程為:ρ2+2ρcosθ=0,點P的極坐標為(2,π2),過點P作圓C的切線,則兩條切線夾角的正切值是______.答案:圓C的極坐標方程ρ2+2ρcosθ=0,化為普通方程為x2+y2+2x=0,即(x-1)2+y2=1.它表示以C(1,0)為圓心,以1為半徑的圓.點P的極坐標為(2,π2),化為直角坐標為(0,2).設兩條切線夾角為2θ,則sinθ=15,cosθ25,故tanθ=12.再由tan2θ=2tanθ1-tan2θ=43,故為43.22.在極坐標系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B23.已知一物體在共點力F1=(lg2,lg2),F2=(lg5,lg2)的作用下產生位移S=(2lg5,1),則這兩個共點力對物體做的總功W為()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共點力的作用下產生位移S=(2lg5,1)∴這兩個共點力對物體做的總功W為(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故選B24.在平面直角坐標系xOy中,已知點A(0,0),B(-2,0),C(-2,1).設k為非零實數,矩陣M=.k001.,N=.0110.,點A、B、C在矩陣MN對應的變換下得到點分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,

(1)求k的值.

(2)判斷變換MN是否可逆,如果可逆,求矩陣MN的逆矩陣;如不可逆,說明理由.答案:(1)由題設得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).計算得△ABC面積的面積是1,△A1B1C1的面積是|k|,則由題設知:|k|=2×1=2.所以k的值為2或-2.(2)令MN=A,設B=abcd是A的逆矩陣,則AB=0k10abcd=1001?ckdkab=1001?ck=1dk=0a=0b=1①當k≠0時,上式?a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩陣是B=011k0.(10分)②當k≠0時,上式不可能成立,MN不可逆,(11分).25.mx+ny=1(mn≠0)與兩坐標軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標軸圍成的三角形面積為12|mn|.故為12|mn|.26.

已知拋物線y2=2px(p>0)的焦點為F,過F的直線交y軸正半軸于點P,交拋物線于A,B兩點,其中點A在第一象限,若,,,則μ的取值范圍是()

A.[1,]

B.[,2]

C.[2,3]

D.[3,4]答案:B27.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標為______.答案:因為向量b與a=(2,-1,2)共線,所以設b=ma,因為且a?b=-18,所以ma2=-18,因為|a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).28.已知一種材料的最佳加入量在110g到210g之間.若用0.618法安排試驗,則第一次試點的加入量可以是(

)g。答案:171.8或148.229.一個樣本a,99,b,101,c中五個數恰成等差數列,則這個樣本的極差與標準差分別為(

)。答案:4;30.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.31.為了調查某產品的銷售情況,銷售部門從下屬的92家銷售連鎖店中抽取30家了解情況.若用系統(tǒng)抽樣法,則抽樣間隔和隨機剔除的個體數分別為()

A.3,2

B.2,3

C.2,30

D.30,2答案:A32.雙曲線的中心在坐標原點,離心率等于2,一個焦點的坐標為(2,0),則此雙曲線的漸近線方程是______.答案:∵離心率等于2,一個焦點的坐標為(2,0),∴ca=2,

c=2且焦點在x軸上,∴a=1∵c2=a2+b2∴b2=3∴b=3.所以雙曲線的漸進方程為y=±3x.故為y=±3x33.若f(x)=x2,則對任意實數x1,x2,下列不等式總成立的是(

)

A.f()≤

B.f()<

C.f()≥

D.f()>答案:A34.如果如圖所示的程序中運行后輸出的結果為132,那么在程序While后面的“條件”應為______.答案:第一次循環(huán)之后s=12,i=11;第二次循環(huán)之后結果是s=132,i=10,已滿足題意跳出循環(huán).由于此循環(huán)體是當型循環(huán)i=12、11都滿足條件,i=10不滿足條件.故為:i≥1135.下列給變量賦值的語句正確的是()

A.5=a

B.a+2=a

C.a=b=4

D.a=2*a答案:D36.復數3+4i的模等于______.答案:|3+4i|=32+42=5,故為5.37.若直線過點(1,2),(),則此直線的傾斜角是()

A.60°

B.45°

C.30°

D.90°答案:C38.已知|a|=8,e是單位向量,當它們之間的夾角為π3時,a在e方向上的投影為()A.43B.4C.42D.8+23答案:由兩個向量數量積的幾何意義可知:a在e方向上的投影即:a?e=|a||e|cosπ3=8×1×12=4故選B39.直線y=3x+1的斜率是()A.1B.2C.3D.4答案:因為直線y=3x+1是直線的斜截式方程,所以直線的斜率是3.故選C.40.“a=18”是“對任意的正數x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當“a=18”時,由基本不等式可得:“對任意的正數x,2x+ax≥1”一定成立,即“a=18”?“對任意的正數x,2x+ax≥1”為真命題;而“對任意的正數x,2x+ax≥1的”時,可得“a≥18”即“對任意的正數x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對任意的正數x,2x+ax≥1的”充分不必要條件故選A41.設F1,F2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:4342.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負時,由韋達定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根時,-1≤a≤178故為:-1≤a≤17843.圓x2+y2=1在矩陣A={}對應的變換下,得到的曲線的方程是()

A.=1

B.=1

C.=1

D.=1答案:C44.試比較nn+1與(n+1)n(n∈N*)的大小.

當n=1時,有nn+1______(n+1)n(填>、=或<);

當n=2時,有nn+1______(n+1)n(填>、=或<);

當n=3時,有nn+1______(n+1)n(填>、=或<);

當n=4時,有nn+1______(n+1)n(填>、=或<);

猜想一個一般性的結論,并加以證明.答案:當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,根據上述結論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.45.已知橢圓的中心在原點,對稱軸為坐標軸,焦點在x軸上,短軸的一個頂點B與兩個焦點F1,F2組成的三角形的周長為4+23,且∠F1BF2=2π3,求橢圓的標準方程.答案::設長軸長為2a,焦距為2c,則在△F2OB中,由∠F2BO=π3得:c=32a,所以△F2BF1的周長為2a+2c=2a+3a=4+23,∴a=2,c=3,∴b2=1;故所求橢圓的標準方程為x24+y2=1.46.寫出按從小到大的順序重新排列x,y,z三個數值的算法.答案:算法如下:(1).輸入x,y,z三個數值;(2).從三個數值中挑出最小者并換到x中;(3).從y,z中挑出最小者并換到y(tǒng)中;(4).輸出排序的結果.47.若A∩B=A∪B,則A______B.答案:設有集合W=A∪B=B∩C,根據并集的性質,W=A∪B?A?W,B?W,根據交集的性質,W=A∩B?W?A,W?B由集合子集的性質,A=B=W,故為:=.48.某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯表計算得Χ2≈3.918,經查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結論中,正確結論的序號是______

(1)有95%的把握認為“這種血清能起到預防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預防感冒的有效率為95%

(4)這種血清預防感冒的有效率為5%答案:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認為“這種血清能起到預防感冒的作用”950/0僅是指“血清與預防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.故為:(1).49.如圖,海中有一小島,周圍3.8海里內有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進,問此艦有沒有觸礁的危險?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒有危險.50.已知函數f(x)=2x,數列{an}滿足a1=f(0),且f(an+1)=(n∈N*),

(1)證明數列{an}是等差數列,并求a2010的值;

(2)分別求出滿足下列三個不等式:,

的k的取值范圍,并求出同時滿足三個不等式的k的最大值;

(3)若不等式對一切n∈N*都成立,猜想k的最大值,并予以證明。答案:解:(1)由,得,即,∴是等差數列,∴,∴。(2)由,得;,得;,得,,∴當k同時滿足三個不等式時,。(3)由,得恒成立,令,則,,∴,∵F(n)是關于n的單調增函數,∴,∴。第3卷一.綜合題(共50題)1.已知拋物線C:x2=2py(p>0)的焦點為F,拋物線上一點A的橫坐標為x1(x1>0),過點A作拋物線C的切線l1交x軸于點D,交y軸于點Q,交直線l:y=p2于點M,當|FD|=2時,∠AFD=60°.

(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;

(2)若B位于y軸左側的拋物線C上,過點B作拋物線C的切線l2交直線l1于點P,交直線l于點N,求△PMN面積的最小值,并求取到最小值時的x1值.答案:(1)設A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點A,Q,D的坐標可知:D為線段AQ的中點,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯立y=x22x-x224y=x12x-x214得到點P(x1+x22,x1x24),聯立y=x12x-x214y=1得到點M(x12+2x1,1).同理N(x22+2x2,1),設h為點P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①設AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當t∈(0,33)時,S(t)單調遞減;當t∈(33,+∞)時,S(t)單調遞增,所以當t=33時,S取到最小值為1639,此時b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時的x1值為233.2.系數矩陣為.2132.,解為xy=12的一個線性方程組是______.答案:可設線性方程組為2132xy=mn,由于方程組的解是xy=12,∴mn=47,∴所求方程組為2x+y=43x+2y=7,故為:2x+y=43x+2y=7.3.(坐標系與參數方程選做題)在極坐標系中,點M(ρ,θ)關于極點的對稱點的極坐標是______.答案:由點的極坐標的意義可得,點M(ρ,θ)關于極點的對稱點到極點的距離等于ρ,極角為π+θ,故點M(ρ,θ)關于極點的對稱點的極坐標是(ρ,π+θ),故為(ρ,π+θ).4.設空間兩個不同的單位向量

a=(x1,y1,0),

b=(x2,y2,0)與向量

c=(1,1,1)的夾角都等于45°.

(1)求x1+y1和x1y1的值;

(2)求<

a,

b>的大?。鸢福海?)∵單位向量a=(x1,y1,0)與向量c=(1,1,1)的夾角等于45°∴|a|=x21+y21=1,cos45°=a?

c|a|?

|c|=13(x1+y1)=22∴x1+y1=62,x1?y1=-14(2)同理可知x2+y2=22,x2?y2=-14∴x1?x2=-14,y1?y2=-14cos<a,b>=a?b|a|?|b|=x1?x2+y1?y2=-12∴<a,b>=120°5.對任意實數x,y,定義運算x*y=ax+by+cxy,其中a,b,c是常數,等式右邊的運算是通常的加法和乘法運算。已知1*2=3,2*3=4,并且有一個非零常數m,使得對任意實數x,都有x*m=x,則m的值是(

A.4

B.-4

C.-5

D.6答案:A6.求證:菱形各邊中點在以對角線的交點為圓心的同一個圓上.答案:已知:如圖,菱形ABCD的對角線AC和BD相交于點O.求證:菱形ABCD各邊中點M、N、P、Q在以O為圓心的同一個圓上.證明:∵四邊形ABCD是菱形,∴AC⊥BD,垂足為O,且AB=BC=CD=DA,而M、N、P、Q分別是邊AB、BC、CD、DA的中點,∴OM=ON=OP=OQ=12AB,∴M、N、P、Q四點在以O為圓心OM為半徑的圓上.所以菱形各邊中點在以對角線的交點為圓心的同一個圓上.7.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運用類比方法,若三棱錐的三條側棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補成一個長方體,其外接球的半徑R為長方體對角線長的一半.故為a2+b2+c22故為:a2+b2+c228.如圖,四邊形ABCD內接于⊙O,AD:BC=1:2,AB=35,PD=40,則過點P的⊙O的切線長是()A.60B.402C.352D.50答案:作切線PE,由切割線定理知,PE2=PD?PC=PA?PB,所以PAPC=PAPB,又△PAD與△PBC有公共角P,∠PDA=∠PBC,所以△PAD∽△PBC.故PDPB=ADBC=12,即40PB=12所以PB=80,又AB=35,PE2=PA?PB=(PB-AB)?PB=(80-35)×80=602,PE=60.故選A.9.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三點,n=(1,1,1),則以n為方向向量的直線l與平面ABC的關系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由題意,AB=(-1,1,0),BC=(0,-1,1)∵n?AB=0,n?BC=0∴以n為方向向量的直線l與平面ABC垂直故選A.10.設隨機變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()

A.

B.

C.

D.答案:C11.拋物線y2=4x,O為坐標原點,A,B為拋物線上兩個動點,且OA⊥OB,當直線AB的傾斜角為45°時,△AOB的面積為______.答案:設直線AB的方程為y=x-m,代入拋物線聯立得x2-(2m+4)x+m2=0,則x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面積為S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因為OA⊥OB,設A(x1,2x1),B(x2,-2x2)所以2x1x1?-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故為:8512.已知函數f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小,則實數a的取值范圍______.答案:∵函數f(x)=x2+(a2-1)x+(a-2)的一個零點比1大,一個零點比1小∴f(1)<0∴1+a2-1+a-2<0∴a2+a-2<0∴-2<a<1∴實數a的取值范圍為(-2,1)故為:(-2,1)13.在極坐標系中,點(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標系中,點(2

,

π6)化為直角坐標為(3,1),直線ρsinθ=2化為直角坐標方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(2

π6)到直線ρsinθ=2的距離1,故為:1.14.如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若則下列向量中與相等的向量是()

A.

B.

C.

D.

答案:A15.已知拋物線C的參數方程為x=8t2y=8t(t為參數),設拋物線C的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數方程x=8t2y=8t(t為參數),消去參數化為普通方程為y2=8x.故焦點F(2,0),準線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設準線和x軸的交點為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點A(0,43),把y=43代入拋物線求得x=6,∴點P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.16.F1,F2是橢圓x2a2+y2b2=1的兩個焦點,點P是橢圓上任意一點,從F1引∠F1PF2的外角平分線的垂線,交F2P的延長線于M,則點M的軌跡是______.答案:設從F1引∠F1PF2的外角平分線的垂線,垂足為R∵△PF1M中,PR⊥F1M且PR是∠F1PM的平分線∴|MP|=|F1P|,可得|PF1|+|PF2|=|PM|+|PF2|=|MF2|根據橢圓的定義,可得|PF1|+|PF2|=2a,∴|MF2|=2a,即動點M到點F2的距離為定值2a,因此,點M的軌跡是以點F2為圓心,半徑為2a的圓.故為:以點F2為圓心,半徑為2a的圓.17.已知x,y,z滿足(x-3)2+(y-4)2+z2=2,那么x2+y2+z2的最小值是______.答案:由題意可得P(x,y,z),在以M(3,4,0)為球心,2為半徑的球面上,x2+y2+z2表示原點與點P的距離的平方,顯然當O,P,M共線且P在O,M之間時,|OP|最小,此時|OP|=|OM|-2=32+42-2=52,所以|OP|2=27-102.故為:27-102.18.設計一個計算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數是()

A.13

B.13.5

C.14

D.14.5答案:A19.以下程序輸入2,3,4運行后,輸出的結果是()

INPUT

a,b,c

a=b

b=c

c=a

PRINT

a,b,c.

A.234

B.324

C.343

D.342答案:C20.已知一直線的斜率為3,則這條直線的傾斜角是()A.30°B.45°C.60°D.90°答案:設直線的傾斜角為α,由直線的斜率為3,得到:tanα=3,又α∈(0,180°),所以α=60°.故選C21.如圖所示,正方體的棱長為1,點A是其一棱的中點,則點A在空間直角坐標系中的坐標是()

A.(,,1)

B.(1,1,)

C.(,1,)

D.(1,,1)

答案:B22.如果命題P:?∈{?},命題Q:??{?},那么下列結論不正確的是()A.“P或Q”為真B.“P且Q”為假C.“非P”為假D.“非Q”為假答案:命題P:?∈{?},命題Q:??{?},可直接看出命題Q,命題P都是正確的.故“P或Q”為真.“P且Q”為真.“非P”為假.“非Q”為假.故選B.23.i是虛數單位,若(3+5i)x+(2-i)y=17-2i,則x、y的值分別為()

A.7,1

B.1,7

C.1,-7

D.-1,7答案:B24.若函數,則下列結論正確的是(

)A.,在上是增函數B.,在上是減函數C.,是偶函數D.,是奇函數答案:C解析:對于時有是一個偶函數25.設向量與的夾角為θ,,,則cosθ等于()

A.

B.

C.

D.答案:D26.已知|a|=1,|b|=2,a與b的夾角為60°,則a+b在a方向上的投影為______.答案:∵|a|=1,|b|=2,a與b的夾角為60°,∴a?b=a|×|b|×cos60°=1由此可得(a+b)2=|a|2+2a?b+|b|2=1+2+4=7∴|a+b|=7.設a+b與a的夾角為θ,則∵(a+b)?a=|a|2+a?b=2∴cosθ=(a+b)?a|a+b|?|a|=277,可得向量a+b在a方向上的投影為|a+b|cosθ=7×277=2故為:227.設直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()

A.

B.

C.

D.答案:C28.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,則該弦所在直線的普通方程為______.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,設過點P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y

12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴該弦所在直線的普通方程為y+1=x-2,即x-y-3=0.故為:x-y-3=0.29.已知集合M={0,1},N={2x+1|x∈M},則M∩N=()A.{1}B.{0,1}C.{0,1,3}D.空集答案:∵M={0,1},N={2x+1|x∈M},當x=0時,2x+1=1;當x=1時,2x+1=3,∴N={1,3}則M∩N={1}.故選A.30.設,是互相垂直的單位向量,向量=(m+1)-3,=-(m-1),(+)⊥(-)則實數m為()

A.-2

B.2

C.-

D.不存在答案:A31.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點,n∈N*.已知OP1=(2,0),則OP2011的坐標為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標不變,縱坐標構成以0為首項,2為公差的等差數列∴OP2011的坐標為(2,4020)故為:(2,4020)32.盒中裝有形狀、大小完全相同的5個球,其中紅色球3個,黃色球2個.若從中隨機取出2個球,則所取出的2個球顏色不同的概率等于______.答案:從中隨機取出2個球,每個球被取到的可能性相同,是古典概型從中隨機取出2個球,所有的取法共有C52=10所取出的2個球顏色不同,所有的取法有C31?C21=6由古典概型概率公式知P=610=35故為3533.兩圓相交于點A(1,3)、B(m,-1),兩圓的圓心均在直線x-y+c=0上,則m+c的值為(

A.3

B.2

C.-1

D.0答案:A34.已知求證:答案:證明見解析解析:證明:35.直線ax+by=1與圓x2+y2=1有兩不同交點,則點P(a,b)與圓的位置關系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點,∴1a2+b2<1即a2+b2>1.故為:點在圓外.36.設直線l過點P(-3,3),且傾斜角為56π

(1)寫出直線l的參數方程;

(2)設此直線與曲線C:x=2cosθy=4sinθ(θ為參數)交A、B兩點,求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論