2023年濰坊護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年濰坊護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年濰坊護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年濰坊護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年濰坊護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年濰坊護(hù)理職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.已知平面內(nèi)一動點P到F(1,0)的距離比點P到y(tǒng)軸的距離大1.

(1)求動點P的軌跡C的方程;

(2)過點F的直線交軌跡C于A,B兩點,交直線x=-1于M點,且MA=λ1AF,MB=λ2BF,求λ1+λ2的值.答案:(1)由題意知動點P到F(1,0)的距離與直線x=-1的距離相等,由拋物線定義知,動點P在以F(1,0)為焦點,以直線x=-1為準(zhǔn)線的拋物線上,方程為y2=4x.(2)由題設(shè)知直線的斜線存在,設(shè)直線AB的方程為:y=k(x-1),設(shè)A(x1,y1),B(x2,y2),由y=k(x-1)y2=4x,得k2x2-2(k2+2)x+k2=0,∵x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得k2x2-2(k2+2)x+k2=0,∴x1+x2=2(k2+2)k2,x1x2=1,由MA=λ1AF,得λ1=-1-2x2-1,同理λ2=-1-2x2-1,∴λ1+λ2=-2-2(1x1-1+1x2-1)=0.2.下列命題中正確的是()

A.若,則

B.若,則

.若,則

D.若,則答案:C3.參數(shù)方程(0<θ<2π)表示()

A.雙曲線的一支,這支過點(1,)

B.拋物線的一部分,這部分過(1,)

C.雙曲線的一支,這支過點(-1,)

D.拋物線的一部分,這部分過(-1,)答案:B4.設(shè)兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)的密度曲線如圖所示,則有()

A.μ1<μ2,σ1<σ2

B.μ1<μ2,σ1>σ2

C.μ1>μ2,σ1<σ2

D.μ1>μ2,σ1>σ2

答案:A5.(選修4-4:坐標(biāo)系與參數(shù)方程)

在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.

(Ⅰ)求圓C的直角坐標(biāo)方程;

(Ⅱ)設(shè)圓C與直線l交于點A、B,若點P的坐標(biāo)為(3,5),求|PA|+|PB|.答案:(Ⅰ)∵圓C的方程為ρ=25sinθ.∴x2+y2-25y=0,即圓C的直角坐標(biāo)方程:x2+(y-5)2=5.(Ⅱ)(3-22t)2+(22t)2=5,即t2-32t+4=0,由于△=(32)2-4×4=2>0,故可設(shè)t1,t2是上述方程的兩實根,所以t1+t2=32t1t2=4,又直線l過點P(3,5),故|PA|+|PB|=|t1|+|t2|=t1+t2=326.已知直線經(jīng)過點A(0,4)和點B(1,2),則直線AB的斜率為()

A.3

B.-2

C.2

D.不存在答案:B7.在△ABC中,AB=2,BC=3,∠ABC=60°,AD為BC邊上的高,O為AD的中點,若

=λ+μ,則λ+μ=()

A.1

B.

C.

D.答案:D8.甲射擊運(yùn)動員擊中目標(biāo)為事件A,乙射擊運(yùn)動員擊中目標(biāo)為事件B,則事件A,B為()

A.互斥事件

B.獨立事件

C.對立事件

D.不相互獨立事件答案:B9.若函數(shù)y=f(x)的定義域是[2,4],則y=f(log12x)的定義域是()A.[12,1]B.[4,16]C.[116,14]D.[2,4]答案:∵y=f(log12x),令log12x=t,∴y=f(log12x)=f(t),∵函數(shù)y=f(x)的定義域是[2,4],∴y=f(t)的定義域也為[2,4],即2≤t≤4,∴有2≤log12x≤4,解得:116≤x≤14,∵函數(shù)的定義域即解析式中自變量的取值范圍,∴y=f(log12x)的定義域為116≤x≤14,即:[116,14].故選C.10.M∪{1}={1,2,3}的集合M的個數(shù)是______.答案:∵M(jìn)∪{1}={1,2,3},∴M={1,2,3}或{2,3},則符合題意M的個數(shù)是2.故為:211.(選做題)

設(shè)集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內(nèi)直接求解情況比較多,考慮補(bǔ)集設(shè)全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內(nèi)}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內(nèi)∴,∴,∴,∴∴實數(shù)a的取值范圍為.12.若kxy-8x+9y-12=0表示兩條直線,則實數(shù)k的值及兩直線所成的角分別是()

A.8,60°

B.4,45°

C.6,90°

D.2,30°答案:C13.三個數(shù)a=0.52,b=log20.5,c=20.5之間的大小關(guān)系是()A.a(chǎn)<c<bB.b<c<aC.a(chǎn)<b<cD.b<a<c答案:∵0<a=0.52<1,b=log20.5<log21=0,c=20.5>20=1,∴b<a<c故選D.14.下面玩擲骰子放球游戲,若擲出1點或6點,甲盒放一球;若擲出2點,3點,4點或5點,乙盒放一球,設(shè)擲n次后,甲、乙盒內(nèi)的球數(shù)分別為x、y.

(1)當(dāng)n=3時,設(shè)x=3,y=0的概率;

(2)當(dāng)n=4時,求|x-y|=2的概率.答案:由題意知,在甲盒中放一球概率為13,在乙盒放一球的概率為23(3分)(1)當(dāng)n=3時,x=3,y=0的概率為C03(13)3(23)0=127(6分)(2)|x-y|=2時,有x=3,y=1或x=1,y=3,它的概率為C14

(13)3(23)1+C34(13)1(23)3=4081(12分).15.雙曲線x225-y29=1的兩個焦點分別是F1,F(xiàn)2,雙曲線上一點P到F1的距離是12,則P到F2的距離是()A.17B.7C.7或17D.2或22答案:由題意,a=5,則由雙曲線的定義可知PF1-PF2=±10,∴PF2=2或22,故選D.16.已知,,且與垂直,則實數(shù)λ的值為()

A.±

B.1

C.-

D.答案:D17.在平面直角坐標(biāo)系下,曲線C1:x=2t+2ay=-t(t為參數(shù)),曲線C2:x2+(y-2)2=4.若曲線C1、C2有公共點,則實數(shù)a的取值范圍

______.答案:∵曲線C1:x=2t+2ay=-t(t為參數(shù)),∴x+2y-2a=0,∵曲線C2:x2+(y-2)2=4,圓心為(0,2),∵曲線C1、C2有公共點,∴圓心到直線x+2y-2a=0距離小于等于2,∴|4-2a|5≤2,解得,2-5≤a≤2+5,故為2-5≤a≤2+5.18.“因為指數(shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯誤是()

A.大前提錯導(dǎo)致結(jié)論錯

B.小前提錯導(dǎo)致結(jié)論錯

C.推理形式錯導(dǎo)致結(jié)論錯

D.大前提和小前提錯都導(dǎo)致結(jié)論錯答案:A19.把方程化為以參數(shù)的參數(shù)方程是(

)A.B.C.D.答案:D解析:,取非零實數(shù),而A,B,C中的的范圍有各自的限制20.向量b與a=(2,-1,2)共線,且a?b=-18,則b的坐標(biāo)為______.答案:因為向量b與a=(2,-1,2)共線,所以設(shè)b=ma,因為且a?b=-18,所以ma2=-18,因為|a|=22+1+22=3,所以m=-2.所以b=ma=-2(2,-1,2)=(-4,2,-4).故為:(-4,2,-4).21.用長為4、寬為2的矩形做側(cè)面圍成一個高為2的圓柱,此圓柱的軸截面面積為()A.8B.8πC.4πD.2π答案:∵用長為4、寬為2的矩形做側(cè)面圍成一個圓柱,且圓柱高為h=2∴底面圓周由長為4的線段圍成,可得底面圓直徑2r=4π∴此圓柱的軸截面矩形的面積為S=2r×h=8π故選:B22.由1、2、3可以組成______個沒有重復(fù)數(shù)字的兩位數(shù).答案:沒有重復(fù)數(shù)字的兩位數(shù)共有3×2=6個故為:623.若兩條平行線L1:x-y+1=0,與L2:3x+ay-c=0

(c>0)之間的距離為,則等于()

A.-2

B.-6

C..2

D.0答案:A24.若集合A={x|3≤x<7},B={x|2<x<10},則A∪B=______.答案:因為集合A={x|3≤x<7},B={x|2<x<10},所以A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10},故為:{x|2<x<10}.25.已知F1(-2,0),F(xiàn)2(2,0)兩點,曲線C上的動點P滿足|PF1|+|PF2|

=32|F1F2|.

(Ⅰ)求曲線C的方程;

(Ⅱ)若直線l經(jīng)過點M(0,3),交曲線C于A,B兩點,且MA=12MB,求直線l的方程.答案:(Ⅰ)由已知可得|PF1|+|PF2|

=32|F1F2|

=6>|F1F2|=4,故曲線C是以F1,F(xiàn)2為焦點,長軸長為6的橢圓,其方程為x29+y25=1.(Ⅱ)方法一:設(shè)A(x1,y1),B(x2,y2),由條件可知A為MB的中點,則有x129+y125=1,

(1)x229+y225=1,(2)2x1=x2,

(3)2y1=y2+3.

(4)將(3)、(4)代入(2)得4x129+(2y1-3)25=1,整理為4x129+4y125-125y1+45=0.將(1)代入上式得y1=2,再代入橢圓方程解得x1=±35,故所求的直線方程為y=±53x+3.方法二:依題意,直線l的斜率存在,設(shè)其方程為y=kx+3.由y=kx+3x29+y25=1得(5+9k2)x2+54kx+36=0.令△>0,解得k2>49.設(shè)A(x1,y1),B(x2,y2),則x1+x2=-54k5+9k2,①x1x2=365+9k2.②因為MA=12MB,所以A為MB的中點,從而x2=2x1.將x2=2x1代入①、②,得x1=-18k5+9k2,x12=185+9k2,消去x1得(-18k5+9k2)2=185+9k2,解得k2=59,k=±53.所以直線l的方程為y=±53x+3.26.已知A,B,C三點不共線,O為平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點不共線,點O是平面ABC外一點,若由向量OP=15OA+23OB+λOC確定的點P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21527.從裝有2個紅球和2個白球的口袋內(nèi),任取2個球,那么下面互斥而不對立的兩個事件是()

A.恰有1個白球;恰有2個白球

B.至少有1個白球;都是白球

C.至少有1個白球;

至少有1個紅球

D.至少有1個白球;

都是紅球答案:A28.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.

答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.29.口袋中裝有三個編號分別為1,2,3的小球,現(xiàn)從袋中隨機(jī)取球,每次取一個球,確定編號后放回,連續(xù)取球兩次.則“兩次取球中有3號球”的概率為()A.59B.49C.25D.12答案:每次取球時,出現(xiàn)3號球的概率為13,則兩次取得球都是3號求得概率為C22?(13)2=19,兩次取得球只有一次取得3號求得概率為C12?13?23=49,故“兩次取球中有3號球”的概率為19+49=59,故選A.30.設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.答案:證明:不妨設(shè)a≥b≥c>0,∴a2≥b2≥c2,由排序原理:順序和≥反序和,得:a3+b3≥a2b+b2a,b3+c3≥b2c+c2b,c3+a3≥a2c+c2a三式相加得2(a3+b3+c3)≥a(b2+c2)+b(c2+a2)+c(a2+b2).又a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca.所以2(a3+b3+c3)≥6abc,∴a3+b3+c3≥3abc.當(dāng)且僅當(dāng)a=b=c時,等號成立.31.某房間有四個門,甲要各進(jìn)、出這個房間一次,不同的走法有多少種?()

A.12

B.7

C.16

D.64答案:C32.在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1。拓展到空間,研究正四面體(四個面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是(

)。答案:3:133.|a|=4,|b|=5,|a+b|=8,則a與b的夾角為______.答案:設(shè)a與b的夾角為θ因為|a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故為arccos234034.一個簡單多面體的面都是三角形,頂點數(shù)V=6,則它的面數(shù)為______個.答案:∵已知多面體的每個面有三條邊,每相鄰兩條邊重合為一條棱,∴棱數(shù)E=32F,代入公式V+F-E=2,得F=2V-4.∵V=6,∴F=8,E=12,即多面體的面數(shù)F為8,棱數(shù)E為12.故為8.35.下列函數(shù)中,定義域為(0,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域為(0,+∞),函數(shù)y=x的定義域為[0,+∞),函數(shù)y=1x2的定義域為{x|x≠0},函數(shù)y=12x的定義域為R,故只有A中的函數(shù)滿足定義域為(0,+∞),故選A.36.在某電視歌曲大獎賽中,最有六位選手爭奪一個特別獎,觀眾A,B,C,D猜測如下:A說:獲獎的不是1號就是2號;A說:獲獎的不可能是3號;C說:4號、5號、6號都不可能獲獎;D說:獲獎的是4號、5號、6號中的一個.比賽結(jié)果表明,四個人中恰好有一個人猜對,則猜對者一定是觀眾

獲特別獎的是

號選手.答案:C,3.解析:推理如下:因為只有一人猜對,而C與D互相否定,故C、D中一人猜對。假設(shè)D對,則推出B也對,與題設(shè)矛盾,故D猜錯,所以猜對者一定是C;于是B一定猜錯,故獲獎?wù)呤?號選手(此時A錯).37.(本題滿分12分)已知對任意的平面向量,把繞其起點沿逆時針方向旋轉(zhuǎn)角,得到向量,叫做把點B繞點A逆時針方向旋轉(zhuǎn)角得到點P

①已知平面內(nèi)的點A(1,2),B,把點B繞點A沿逆時針方向旋轉(zhuǎn)后得到點P,求點P的坐標(biāo)

②設(shè)平面內(nèi)曲線C上的每一點繞逆時針方向旋轉(zhuǎn)后得到的點的軌跡是曲線,求原來曲線C的方程.答案:解:

……2分

……6分

解得x="0,y="-1

……7分②

…………10分

即…………11分又x’2-y’2="1

"……12分

……13分

化簡得:

……14分解析:略38.“神六”上天并順利返回,讓越來越多的青少年對航天技術(shù)發(fā)生了興趣.某學(xué)??萍夹〗M在計算機(jī)上模擬航天器變軌返回試驗,設(shè)計方案

如圖:航天器運(yùn)行(按順時針方向)的軌跡方程為x2100+y225=1,變軌(航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞€)后返回的軌跡是以y軸為

對稱軸、M(0,647)為頂點的拋物線的實線部分,降落點為D(8,0),觀測點A(4,0)、B(6,0)同時跟蹤航天器.試問:當(dāng)航天器在x軸上方時,觀測點A、B測得離航天器的距離分別為______時航天器發(fā)出變軌指令.答案:設(shè)曲線方程為y=ax2+647,由題意可知,0=a?64+647.∴a=-17,∴曲線方程為y=-17x2+647.設(shè)變軌點為C(x,y),根據(jù)題意可知,拋物線方程與橢圓方程聯(lián)立,可得4y2-7y-36=0,y=4或y=-94(不合題意,舍去).∴y=4.∴x=6或x=-6(不合題意,舍去).∴C點的坐標(biāo)為(6,4),|AC|=25,|BC|=4.故為:25、4.39.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標(biāo)出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點時,公路總長最小,最小值為9.806千米…(16分)40.關(guān)于如圖所示幾何體的正確說法為______.

①這是一個六面體;

②這是一個四棱臺;

③這是一個四棱柱;

④這是一個四棱柱和三棱柱的組合體;

⑤這是一個被截去一個三棱柱的四棱柱.答案:①因為有六個面,屬于六面體的范圍,②這是一個很明顯的四棱柱,因為側(cè)棱的延長線不能交與一點,所以不正確.③如果把幾何體放倒就會發(fā)現(xiàn)是一個四棱柱,④可以有四棱柱和三棱柱組成,⑤和④的想法一樣,割補(bǔ)方法就可以得到.故為:①③④⑤.41.方程.12

41x

x21-3

9.=0的解集為______.答案:.12

41x

x21-3

9.=9x+2x2-12-4x+3x2-18=0,即x2+x-6=0,故x1=-3,x2=2.故方程的解集為{-3,2}.42.執(zhí)行下列程序后,輸出的i的值是()

A.5

B.6

C.10

D.11答案:D43.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為744.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時,|ma+nb|的最大值為______.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時,|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.45.在(1+2x)5的展開式中,x2的系數(shù)等于______.(用數(shù)字作答)答案:由于(1+2x)5的展開式的通項公式為Tr+1=Cr5?(2x)r,令r=2求得x2的系數(shù)等于C25×22=40,故為40.46.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設(shè)另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm47.已知A(4,1,9),B(10,-1,6),則A,B兩點間距離為______.答案:∵A(4,1,9),B(10,-1,6),∴A,B兩點間距離為|AB|=(10-4)2+(-1-1)2+(6-9)2=7故為:748.平面內(nèi)有兩個定點F1(-5,0)和F2(5,0),動點P滿足條件|PF1|-|PF2|=6,則動點P的軌跡方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,點P的軌跡是以F1、F2為焦點的雙曲線右支,得c=5,2a=6,∴a=3,∴b2=16,故動點P的軌跡方程是x29-y216=1(x≥3).故選D.49.正多面體只有______種,分別為______.答案:正多面體只有5種,分別為正四面體、正六面體、正八面體、正十二面體、正二十面體.故為:5,正四面體、正六面體、正八面體、正十二面體、正二十面體.50.某水產(chǎn)試驗廠實行某種魚的人工孵化,10000個卵能孵化出7645尾魚苗.根據(jù)概率的統(tǒng)計定義解答下列問題:

(1)求這種魚卵的孵化概率(孵化率);

(2)30000個魚卵大約能孵化多少尾魚苗?

(3)要孵化5000尾魚苗,大概得準(zhǔn)備多少魚卵?(精確到百位)答案:(1)這種魚卵的孵化概率為:764510000=0.7645(2)由(1)知,30000個魚卵大約能孵化:30000×0.7645=22935尾魚苗(3)要孵化5000尾魚苗,需準(zhǔn)備50000.7645=6500個魚卵.第2卷一.綜合題(共50題)1.已知A(1,1),B(2,4),則直線AB的斜率為()

A.1

B.2

C.3

D.4答案:C2.已知a,b,c是空間的一個基底,且實數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:03.以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,橢圓長軸的最小值為()

A.

B.

C.2

D.2

答案:D4.“因為對數(shù)函數(shù)y=logax是增函數(shù)(大前提),而y=logx是對數(shù)函數(shù)(小前提),所以y=logx是增函數(shù)(結(jié)論).”上面推理的錯誤是()

A.大前提錯導(dǎo)致結(jié)論錯

B.小前提錯導(dǎo)致結(jié)論錯

C.推理形式錯導(dǎo)致結(jié)論錯

D.大前提和小前提都錯導(dǎo)致結(jié)論錯答案:A5.某學(xué)校為了解高一男生的百米成績,隨機(jī)抽取了50人進(jìn)行調(diào)查,如圖是這50名學(xué)生百米成績的頻率分布直方圖.根據(jù)該圖可以估計出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生______人.

答案:第三和第四個小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績在[13,14]內(nèi)的頻率為:0.7,因為根據(jù)該圖可以估計出全校高一男生中百米成績在[13,14]內(nèi)的人數(shù)大約是140人,則高一共有男生1400.7=200人.故為:200.6.3科老師都布置了作業(yè),在同一時刻4名學(xué)生都做作業(yè)的可能情況有()

A.43種

B.4×3×2種

C.34種

D.1×2×3種答案:C7.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實數(shù)a的取值范圍是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D8.已知函數(shù)f(x)=(12)x

x≥4

f(x+1)

x<4

則f(2+log23)的值為______.答案:∵2+log23∈(2,3),∴f(2+log23)=f(2+log23+1)=f(3+log23)=(12)3+log23=(12)3(12)log23=18×13=124故為1249.若圓x2+y2=4與圓x2+y2+2ay-6=0(a>0)的公共弦的長為23,則a=______.答案:由已知x2+y2+2ay-6=0的半徑為6+a2,由圖可知6+a2-(-a-1)2=(3)2,解之得a=1.故為:1.10.方程組的解集是(

A.{(-3,0)}

B.{-3,0}

C.(-3,0)

D.{(0,-3)}

答案:A11.如圖,F(xiàn)1,F(xiàn)2分別為橢圓x2a2+y2b2=1的左、右焦點,點P在橢圓上,△POF2是面積為3的正三角形,則b2的值是______.答案:∵△POF2是面積為3的正三角形,∴S=34|PF2|2=3,|PF2|=2.∴c=2,∵△PF1F2為直角三角形,∴a=3+1,故為23.12.把一枚硬幣連續(xù)拋擲兩次,事件A=“第一次出現(xiàn)正面”,事件B=“第二次出現(xiàn)正面”,則P(B|A)等于(

A.

B.

C.

D.答案:A13.(x3+1xx)10的展開式中的第四項是______.答案:由二項式定理的通項公式可知(x3+1xx)10的展開式中的第四項是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.14.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因為向量a=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.15.如圖是一個空間幾何體的三視圖,試用斜二測畫法畫出它的直觀圖.(尺寸不作嚴(yán)格要求,但是凡是未用鉛筆作圖不得分,隨手畫圖也不得分)答案:由題可知題目所述幾何體是正六棱臺,畫法如下:畫法:(1)、畫軸畫x軸、y軸、z軸,使∠x′O′y′=45°,∠x′O′z′=90°

(圖1)(2)、畫底面以O(shè)′為中心,在XOY坐標(biāo)系內(nèi)畫正六棱臺下底面正方形的直觀圖ABCDEF.在z′軸上取線段O′O1等于正六棱臺的高;過O1

畫O1M、O1N分別平行O’x′、O′y′,再以O(shè)1為中心,畫正六棱臺上底面正方形的直觀圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺的直觀圖

(如圖2).16.直三棱柱ABC-A1B1C1中,若CA=a

CB=b

CC1=c

則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故選D.17.已知向量與的夾角為120°,若向量,且,則=()

A.2

B.

C.

D.答案:C18.已知點A分BC所成的比為-13,則點B分AC所成的比為______.答案:由已知得B是AC的內(nèi)分點,且2|AB|=|BC|,故B分AC

的比為ABBC=|AB||BC|=12,故為12.19.直線ax+by=1與圓x2+y2=1有兩不同交點,則點P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點,∴1a2+b2<1即a2+b2>1.故為:點在圓外.20.已知兩直線的方程分別為l1:x+ay+b=0,l2:x+cy+d=0,它們在坐標(biāo)系中的位置如圖所示()

A.b>0,d<0,a<c

B.b>0,d<0,a>c

C.b<0,d>0,a<c

D.b<0,d>0,a>c

答案:D21.從拋物線y2=4x上一點P引拋物線準(zhǔn)線的垂線,垂足為M,且|PM|=5,設(shè)拋物線的焦點為F,則△MPF的面積為()

A.6

B.8

C.10

D.15答案:C22.用一枚質(zhì)地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.

(Ⅰ)分別求ξ和η的期望;

(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)23.已知、分別是的外接圓和內(nèi)切圓;證明:過上的任意一點,都可作一個三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長交于,則,,延長交于;則,即;過分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點,連,則,,,所以,由于在角的平分線上,因此點是的內(nèi)心,(這是由于,,而,所以,點是的內(nèi)心).即弦與相切.24.某水產(chǎn)試驗廠實行某種魚的人工孵化,10000個卵能孵化出7645尾魚苗.根據(jù)概率的統(tǒng)計定義解答下列問題:

(1)求這種魚卵的孵化概率(孵化率);

(2)30000個魚卵大約能孵化多少尾魚苗?

(3)要孵化5000尾魚苗,大概得準(zhǔn)備多少魚卵?(精確到百位)答案:(1)這種魚卵的孵化概率為:764510000=0.7645(2)由(1)知,30000個魚卵大約能孵化:30000×0.7645=22935尾魚苗(3)要孵化5000尾魚苗,需準(zhǔn)備50000.7645=6500個魚卵.25.過點A(0,2),且與拋物線C:y2=6x只有一個公共點的直線l有()條.A.1B.2C.3D.4答案:∵點A(0,2)在拋物線y2=6x的外部,∴與拋物線C:y2=6x只有一個公共點的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對稱軸平行,故選C.26.設(shè)O是坐標(biāo)原點,F(xiàn)是拋物線y2=2px(p>0)的焦點,A是拋物線上的一個動點,F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p27.對任意實數(shù)x,y,定義運(yùn)算x*y=ax+by+cxy,其中a,b,c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算。已知1*2=3,2*3=4,并且有一個非零常數(shù)m,使得對任意實數(shù)x,都有x*m=x,則m的值是(

)。答案:428.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實數(shù)λ等于()

A.

B.

C.

D.答案:D29.設(shè)過點A(p,0)(p>0)的直線l交拋物線y2=2px(p>0)于B、C兩點,

(1)設(shè)直線l的傾斜角為α,寫出直線l的參數(shù)方程;

(2)設(shè)P是BC的中點,當(dāng)α變化時,求P點軌跡的參數(shù)方程,并化為普通方程.答案:(1)l的參數(shù)方程為x=p+tcosαy=tsinα(t為參數(shù))其中α≠0(2)將直線的參數(shù)方程代入拋物線方程中有:t2sin2α-2ptcosα-2p2=0設(shè)B、C兩點對應(yīng)的參數(shù)為t1,t2,其中點P的坐標(biāo)為(x,y),則點P所對應(yīng)的參數(shù)為t1+t22,由t1+t2=2pcosαsin2αt1t2=-2p2sin2α,當(dāng)α≠90°時,應(yīng)有x=p+t1+t22cosα=p+ptan2αy=t1+t22sinα=ptanα(α為參數(shù))消去參數(shù)得:y2=px-p2當(dāng)α=90°時,P與A重合,這時P點的坐標(biāo)為(p,0),也是方程的解綜上,P點的軌跡方程為y2=px-p230.已知曲線x2a+y2b=1和直線ax+by+1=0(a,b為非零實數(shù)),在同一坐標(biāo)系中,它們的圖形可能是()A.

B.

C.

D.

答案:A選項中,直線的斜率大于0,故系數(shù)a,b的符號相反,此時曲線應(yīng)是雙曲線,故不對;B選項中直線的斜率小于0,故系數(shù)a,b的符號相同且都為負(fù),此時曲線不存在,故不對;C選項中,直線斜率為正,故系數(shù)a,b的符號相反,且a正,b負(fù),此時曲線應(yīng)是焦點在x軸上的雙曲線,圖形符合結(jié)論,可選;D選項中不正確,由C選項的判斷可知D不正確.故選D31.已知:在△ABC中,AD為∠BAC的平分線,AD的垂直平分線EF與AD交于點E,與BC的延長線交于點F,若CF=4,BC=5,則DF=______.答案:連接FA,如下圖所示:∵EF垂直平分AD,∴FA=FD,∠FAD=∠FDA.即∠FAC+∠CAD=∠B+∠BAD.又∠CAD=∠BAD.故∠FAC=∠B;又∠AFC=∠BFA.∴△ABF∽△CAF.∴AF2=CF?BF=4?(4+5)=36∴DF=AF=6故為:632.如圖:一個力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.33.過點A(1,4)且在x、y軸上的截距相等的直線共有______條.答案:當(dāng)直線過坐標(biāo)原點時,方程為y=4x,符合題意;當(dāng)直線不過原點時,設(shè)直線方程為x+y=a,代入A的坐標(biāo)得a=1+4=5.直線方程為x+y=5.所以過點A(1,4)且在x、y軸上的截距相等的直線共有2條.故為2.34.如果一個圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個圓錐的表面積是12×2π×2+π?12=3π.故:3π.35.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()

A.至少有1個白球;都是白球

B.至少有1個白球;至少有1個紅球

C.恰有1個白球;恰有2個白球

D.至少有一個白球;都是紅球答案:C36.現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為______.答案:∵同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為a24,類比到空間有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為a38,故為a38.37.已知點P是長方體ABCD-A1B1C1D1底面ABCD內(nèi)一動點,其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當(dāng)截面ABCD與圓錐的母線A1C1平行時,截得的圖形是拋物線,故點P在底面的軌跡為拋物線的一部分.故選D.38.(文科做)

f(x)=1x

(x<0)(13)x(x≥0),則不等式f(x)≥13的解集是______.答案:x<0時,f(x)=1x≥13,解得x∈?;x≥0時,f(x)=(13)x≥13,解得x≤1,故0≤x≤1.綜上所述,不等式f(x)≥13的解集為{x|0≤x≤1}.故為:{x|0≤x≤1}.39.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時取等號.即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|

|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當(dāng)且僅當(dāng)a與b共線時取等號,即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時取等號.故為114.40.已知△ABC的三個頂點A(-2,-1)、B(1,3)、C(2,2),則△ABC的重心坐標(biāo)為______.答案:設(shè)△ABC的重心坐標(biāo)為(x,y),則有三角形的重心坐標(biāo)公式可得x=-2+1+23=13,y=-1+3+23=43,故△ABC的重心坐標(biāo)為(13,43),故為(13,43).41.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表

廣告費(fèi)用x(萬元)4235銷售額y(萬元)49263954根據(jù)上表可得回歸方程

y=

bx+

a中的

b為9.4,則

a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.42.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()

A.a(chǎn)<b<c<d

B.a(chǎn)<b<d<c

C.b<a<d<c

D.b<a<c<d

答案:C43.對某種花卉的開放花期追蹤調(diào)查,調(diào)查情況如表:

花期(天)11~1314~1617~1920~22個數(shù)20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個,花期平均為15天的有40個,花期平均為18天的有30個,花期平均為21天的有10個,∴這種花卉的評價花期是12×20+15×40+18×30+21×10100=16,故為:1644.等于()

A.a(chǎn)16

B.a(chǎn)8

C.a(chǎn)4

D.a(chǎn)2答案:C45.設(shè)F1,F(xiàn)2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數(shù)列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:4346.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運(yùn)動,線段PN的垂直平分線交圓M的半徑MP于Q點,設(shè)點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=147.x>1是x>2的()A.充分但不必要條件B.充要條件C.必要但不充分條件D.既不充分又不必要條件答案:由x>1,我們不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分條件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要條件∴x>1是x>2的必要但不充分條件故選C.48.如圖,AB是⊙O的直徑,P是AB延長線上的一點.過P作⊙O的切線,切點為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個含有30°角的三角形,∴BC=12AB,三角形BPC是一個等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:449.在某項體育比賽中,七位裁判為一選手打出分?jǐn)?shù)的莖葉圖如圖,去掉一個最高分和一個攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評委為該選手打出的7個分?jǐn)?shù)數(shù)據(jù)為:89,90,90,93,93,94,95.去掉一個最低分89,去掉一個最高分95,該選手得分的平均數(shù)為15(90+90+93+93+94)=92.故選C.50.△ABC中,,若,則m+n=()

A.

B.

C.

D.1答案:B第3卷一.綜合題(共50題)1.從一堆蘋果中任取5只,稱得它們的質(zhì)量為(單位:克):125124121123127,則該樣本標(biāo)準(zhǔn)差s=______(克)(用數(shù)字作答).答案:由題意得:樣本平均數(shù)x=15(125+124+121+123+127)=124,樣本方差s2=15(12+02+32+12+32)=4,∴s=2.故為2.2.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.3.已知某試驗范圍為[10,90],若用分?jǐn)?shù)法進(jìn)行4次優(yōu)選試驗,則第二次試點可以是(

)。答案:40或60(不唯一)4.如圖,正方體ABCD-A1B1C1D1中,點E是棱BC的中點,點F

是棱CD上的動點.

(Ⅰ)試確定點F的位置,使得D1E⊥平面AB1F;

(Ⅱ)當(dāng)D1E⊥平面AB1F時,求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大?。鸢福海↖)由題意可得:以A為原點,分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(xiàn)(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當(dāng)點F是CD的中點時,D1E⊥平面AB1F.(II)當(dāng)D1E⊥平面AB1F時,F(xiàn)是CD的中點,F(xiàn)(12,1,0)由正方體的結(jié)構(gòu)特征可得:平面AEF的一個法向量為m=(0,0,1),設(shè)平面C1EF的一個法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n

=0,即y=-2zx=y,所以取平面C1EF的一個法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因為當(dāng)把m,n都移向這個二面角內(nèi)一點時,m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因為BA1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.5.已知F1,F(xiàn)2為橢圓x2a2+y2b2=1(a>b>0)的兩個焦點,過F2作橢圓的弦AB,若△AF1B的周長為16,橢圓的離心率為e=32,則橢圓的方程為______.答案:根據(jù)橢圓的定義,△AF1B的周長為16可知,4a=16,∴a=4,∵e=32,∴c=23,∴b=2,∴橢圓的方程為x216+y24=1,故為x216+y24=16.如圖,直線AB是平面α的斜線,A為斜足,若點P在平面α內(nèi)運(yùn)動,使得點P到直線AB的距離為定值a(a>0),則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:因為點P到直線AB的距離為定值a,所以,P點在以AB為軸的圓柱的側(cè)面上,又直線AB是平面α的斜線,且點P在平面α內(nèi)運(yùn)動,所以,可以理解為用用與圓柱底面不平行的平面截圓柱的側(cè)面,所以得到的軌跡是橢圓.故選B.7.在平面直角坐標(biāo)系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).

(1)若AB⊥a,且|AB|=5|OA|(O為坐標(biāo)原點),求向量OB;

(2)若向量AC與向量a共線,當(dāng)k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當(dāng)t=8時,n=24;當(dāng)t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當(dāng)sinθ=4k時,tsinθ取最大值32k,有32k=4,得k=8.這時,sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.8.已知直角三角形兩直角邊長為a,b,求斜邊長c的一個算法分下列三步:

①計算c=a2+b2;

②輸入直角三角形兩直角邊長a,b的值;

③輸出斜邊長c的值;

其中正確的順序是()A.①②③B.②③①C.①③②D.②①③答案:由算法規(guī)則得:第一步:輸入直角三角形兩直角邊長a,b的值,第二步:計算c=a2+b2,第三步:輸出斜邊長c的值;這樣一來,就是斜邊長c的一個算法.故選D.9.已知兩點P(4,-9),Q(-2,3),則直線PQ與y軸的交點分有向線段PQ的比為______.答案:直線PQ與y軸的交點的橫坐標(biāo)等于0,由定比分點坐標(biāo)公式可得0=4+λ(-2)1+λ,解得λ=2,故直線PQ與y軸的交點分有向線段PQ的比為

λ=2,故為:2.10.天氣預(yù)報說,在今后的三天中每一天下雨的概率均為40%,用隨機(jī)模擬的方法進(jìn)行試驗,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用計算器中的隨機(jī)函數(shù)產(chǎn)生0~9之間隨機(jī)整數(shù)的20組如下:

907966191925271932812458569683

431257393027556488730113537989

通過以上隨機(jī)模擬的數(shù)據(jù)可知三天中恰有兩天下雨的概率近似為(

)。答案:0.2511.已知直線的參數(shù)方程為x=1+ty=3+2t.(t為參數(shù)),圓的極坐標(biāo)方程為ρ=2cosθ+4sinθ.

(I)求直線的普通方程和圓的直角坐標(biāo)方程;

(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標(biāo)方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)12.隨機(jī)變量ξ的分布列為k=1、2、3、4,c為常數(shù),則P(<ξ<)的值為()

A.

B.

C.

D.答案:B13.i為虛數(shù)單位,復(fù)數(shù)z=i(1-i),則.z在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵復(fù)數(shù)z=i(1-i)=1+i,則.z=1-i,它在復(fù)平面內(nèi)的對應(yīng)點的坐標(biāo)為(1,-1),故.z在復(fù)平面內(nèi)對應(yīng)的點在第四象限,故選D.14.用隨機(jī)數(shù)表法進(jìn)行抽樣有以下幾個步驟:①將總體中的個體編號;②獲取樣本號碼;③選定開始的數(shù)字,這些步驟的先后順序應(yīng)為()A.①②③B.③②①C.①③②D.③①②答案:∵隨機(jī)數(shù)表法進(jìn)行抽樣,包含這樣的步驟,①將總體中的個體編號;②選定開始的數(shù)字,按照一定的方向讀數(shù);③獲取樣本號碼,∴把題目條件中所給的三項排序為:①③②,故選C.15.意大利數(shù)學(xué)家菲波拉契,在1202年出版的一書里提出了這樣的一個問題:一對兔子飼養(yǎng)到第二個月進(jìn)入成年,第三個月生一對小兔,以后每個月生一對小兔,所生小兔能全部存活并且也是第二個月成年,第三個月生一對小兔,以后每月生一對小兔.問這樣下去到年底應(yīng)有多少對兔子?試畫出解決此問題的程序框圖,并編寫相應(yīng)的程序.答案:見解析解析:解:根據(jù)題意可知,第一個月有對小兔,第二個月有對成年兔子,第三個月有兩對兔子,從第三個月開始,每個月的兔子對數(shù)是前面兩個月兔子對數(shù)的和,設(shè)第個月有對兔子,第個月有對兔子,第個月有對兔子,則有,一個月后,即第個月時,式中變量的新值應(yīng)變第個月兔子的對數(shù)(的舊值),變量的新值應(yīng)變?yōu)榈趥€月兔子的對數(shù)(的舊值),這樣,用求出變量的新值就是個月兔子的數(shù),依此類推,可以得到一個數(shù)序列,數(shù)序列的第項就是年底應(yīng)有兔子對數(shù),我們可以先確定前兩個月的兔子對數(shù)均為,以此為基準(zhǔn),構(gòu)造一個循環(huán)程序,讓表示“第×個月的從逐次增加,一直變化到,最后一次循環(huán)得到的就是所求結(jié)果.流程圖和程序如下:S=1Q=1I=3WHILE

I<=12F=S+QQ=SS=FI=I+1WENDPRINT

FEND16.某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為()

A.9

B.18

C.27

D.36答案:B17.給定兩個長度為1且互相垂直的平面向量OA和OB,點C在以O(shè)為圓心的圓弧AB上變動.若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5218.如果拋物線y2=a(x+1)的準(zhǔn)線方程是x=-3,那么這條拋物線的焦點坐標(biāo)是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:拋物線y2=a(x+1)可由拋物線y2=ax向左平移一個單位長度得到,因為拋物線y2=a(x+1)的準(zhǔn)線方程是x=-3,所以拋物線y2=ax的準(zhǔn)線方程是x=-2,且焦點坐標(biāo)為(2,0),那么拋物線y2=a(x+1)的焦點坐標(biāo)為(1,0).故選C.19.橢圓的兩個焦點坐標(biāo)是()

A.(-3,5),(-3,-3)

B.(3,3),(3,-5)

C.(1,1),(-7,1)

D.(7,-1),(-1,-1)答案:B20.如圖,中心均為原點O的雙曲線與橢圓有公共焦點,M,N是雙曲線的兩頂點.若M,O,N將橢圓長軸四等分,則雙曲線與橢圓的離心率的比值是()A.3B.2C.3D.2答案:∵M(jìn),N是雙曲線的兩頂點,M,O,N將橢圓長軸四等分∴橢圓的長軸長是雙曲線實軸長的2倍∵雙曲線與橢圓有公共焦點,∴雙曲線與橢圓的離心率的比值是2故選B.21.設(shè)兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()

A.μ1<μ2,σ1>σ2

B.μ1<μ2,σ1<σ2

C.μ1>μ2,σ1>σ2

D.μ1>μ2,σ1<σ2

答案:A22.已知a,b,c為正數(shù),且兩兩不等,求證:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).答案:證明:不妨設(shè)a>b>c>0,則(a-b)2>0,(b-c)2>0,(c-a)2>0.由于2(a3+b3+c3)-a2(b+c)+b2(a+c)+c2(a+b)=a2(a-b)+a2(a-c)+b2(b-c)+b2(b-a)+c2(c-a)+c2(c-b)

=(a-b)2(a+b)+(b-c)2(b+c)+(c-a)2(c+a)>0,故有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b)成立.23.設(shè)點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),則OA?BC=______.答案:因為點O(0,0,0),A(1,-2,3),B(-1,2,3),C(1,2,-3),所以O(shè)A=(1,-2,3),BC=(2,0,-6),OA?BC=(1,-2,3)?(2,0,-6)=2-18=-16.故為:-16.24.定點F1,F(xiàn)2,且|F1F2|=8,動點P滿足|PF1|+|PF2|=8,則點P的軌跡是()A.橢圓B.圓C.直線D.線段答案:∵|PF1|+|PF2|=8,且|F1F2|=8∴|PF1|+|PF2|=|F1F2|①當(dāng)點P不在直線F1F2上時,根據(jù)三角形兩邊之和大于第三邊,得|PF1|+|PF2|>|F1F2|,不符合題意;②當(dāng)點P在直線F1F2上時,若點P在F1、F2兩點之外時,可得|PF1|+|PF2|>8,得到|PF1|+|PF2|>|F1F2|,不符合題意;若點P在F1、F2兩點之間(或與F1、F2重合)時,可得|PF1|+|PF2|=|F1F2|,符合題意.綜上所述,得點P在直線F1F2上且在F1、F2兩點之間或與F1、F2重合,故點P的軌跡是線段F1F2.故選:D25.以雙曲線x24-y216=1的右焦點為圓心,且被其漸近線截得的弦長為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.26.設(shè),則之間的大小關(guān)系是

.答案:b>a>c解析:略27.平面內(nèi)有兩個定點F1(-5,0)和F2(5,0),動點P滿足條件|PF1|-|PF2|=6,則動點P的軌跡方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,點P的軌跡是以F1、F2為焦點的雙曲線右支,得c=5,2a=6,∴a=3,∴b2=16,故動點P的軌跡方程是x29-y216=1(x≥3).故選D.28.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.29.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7630.已知|a=2,|b|=1,a與b的夾角為60°,求向量.a+2b與2a+b的夾角.答案:由題意得,a?b=2×1×12=1,∴(a+2b)?(2a+b)=2a2+5a?b+2b2=15,|a+2b|=a2+4a?b+4b2=23,|2a+b|=4a2+4a?b+b2=21,設(shè)a+2b與2a+b夾角為θ,則cosθ=(a+2b)?(2a+b)|a+2b||2a+b|=1523×21=5714,則θ=arccos571431.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.32.設(shè)F1,F(xiàn)2是雙曲線x29-y216=1的兩個焦點,點P在雙曲線上,且∠F1PF2=90°,求△F1PF2的面積.答案:雙曲線x29-y216=1的a=3,c=5,不妨設(shè)PF1>PF2,則PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1?PF2=100∴PF1?PF2=32∴S=12PF1?PF2=16△F1PF2的面積16.33.某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30min抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:

甲:86、72、92、78、77;

乙:82、91、78、95、88

(1)這種抽樣方法是哪一種?

(2)將這兩組數(shù)據(jù)用莖葉圖表示;

(3)將兩組數(shù)據(jù)比較,說明哪個車間產(chǎn)品較穩(wěn)定.答案:(1)因為間隔時間相同,故是系統(tǒng)抽樣.(2)莖葉圖如下:.(3)因為.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車間產(chǎn)品較穩(wěn)定.34.已知函數(shù)f(x)滿足:x≥4,則f(x)=(12)x;當(dāng)x<4時f(x)=f(x+1),則f(2+log23)═______.答案:∵2+log23<4,∴f(2+log23)=f(3+log23)=f(log224)=(12)log224=124故應(yīng)填12435.用反證法證明命題:“三角形的內(nèi)角至多有一個鈍角”,正確的假設(shè)是()

A.三角形的內(nèi)角至少有一個鈍角

B.三角形的內(nèi)角至少有兩個鈍角

C.三角形的內(nèi)角沒有一個鈍角

D.三角形的內(nèi)角沒有一個鈍角或至少有兩個鈍角答案:B36.編號為A、B、C、D、E的五個小球放在如圖所示的五個盒子中,要求每個盒子只能放一個小球,且A不能放1,2號,B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論