版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第三篇熱學(xué)研究物質(zhì)各種熱現(xiàn)象的性質(zhì)和變化規(guī)律熱力學(xué)氣體動(dòng)理論統(tǒng)計(jì)物理熱力學(xué)第一定律熱力學(xué)第二定律統(tǒng)計(jì)方法宏觀量是微觀量的統(tǒng)計(jì)平均玻耳茲曼氣體動(dòng)理論基礎(chǔ)第六章麥克斯韋6-1平衡態(tài)溫度理想氣體狀態(tài)方程一、平衡態(tài)熱力學(xué)系統(tǒng)(熱力學(xué)研究的對(duì)象):大量微觀粒子(分子、原子等)組成的宏觀物體。外界:熱力學(xué)系統(tǒng)以外的物體。系統(tǒng)分類(lèi)(按系統(tǒng)與外界交換特點(diǎn)):孤立系統(tǒng):與外界既無(wú)能量又無(wú)物質(zhì)交換封閉系統(tǒng):與外界只有能量交換而無(wú)物質(zhì)交換開(kāi)放系統(tǒng):與外界既有能量交換又有物質(zhì)交換系統(tǒng)分類(lèi)(按系統(tǒng)所處狀態(tài)):平衡態(tài)系統(tǒng)非平衡態(tài)系統(tǒng)熱平衡態(tài):在無(wú)外界的影響下,不論系統(tǒng)初始狀態(tài)如何,經(jīng)過(guò)足夠長(zhǎng)的時(shí)間后,系統(tǒng)的宏觀性質(zhì)不隨時(shí)間改變的穩(wěn)定狀態(tài)。平衡條件:(1)系統(tǒng)與外界在宏觀上無(wú)能量和物質(zhì)的交換,
(2)系統(tǒng)的宏觀性質(zhì)不隨時(shí)間改變。非平衡態(tài):不具備兩個(gè)平衡條件之一的系統(tǒng)。箱子假想分成兩相同體積的部分,達(dá)到平衡時(shí),兩側(cè)粒子有的穿越界線(xiàn),但兩側(cè)粒子數(shù)相同。例如:粒子數(shù)說(shuō)明:平衡態(tài)是一種理想狀態(tài)
處在平衡態(tài)的大量分子仍在作熱運(yùn)動(dòng),而且因?yàn)榕鲎?,每個(gè)分子的速度經(jīng)常在變,但是系統(tǒng)的宏觀量不隨時(shí)間改變。平衡態(tài)是一種熱動(dòng)平衡
對(duì)熱力學(xué)系統(tǒng)的描述:1.宏觀量——狀態(tài)參量平衡態(tài)下描述宏觀屬性的相互獨(dú)立的物理量。如壓強(qiáng)p、體積V、溫度T
等。2.微觀量描述系統(tǒng)內(nèi)個(gè)別微觀粒子特征的物理量。如分子的質(zhì)量、直徑、速度、動(dòng)量、能量
等。微觀量與宏觀量有一定的內(nèi)在聯(lián)系。二、溫度表征物體的冷熱程度A、B
兩體系互不影響各自達(dá)到平衡態(tài)A、B
兩體系達(dá)到共同的熱平衡狀態(tài)AB絕熱板初態(tài)AB導(dǎo)熱板末態(tài)ABC若A和
B、B
和C
分別熱平衡,則A
和C一定熱平衡。(比如C是測(cè)溫計(jì))
(熱力學(xué)第零定律)
處在相互熱平衡狀態(tài)的系統(tǒng)擁有某一共同的宏觀物理性質(zhì)——溫度
溫標(biāo):溫度的數(shù)值表示方法。熱力學(xué)溫標(biāo)T
與攝氏溫標(biāo)t
的關(guān)系三、理想氣體狀態(tài)方程理想氣體當(dāng)系統(tǒng)處于平衡態(tài)時(shí),各個(gè)狀態(tài)參量之間的關(guān)系式。例:氧氣瓶的壓強(qiáng)降到106
Pa即應(yīng)重新充氣,以免混入其他氣體而需洗瓶。今有一瓶氧氣,容積為32l,壓強(qiáng)為1.3107Pa,若每天用105Pa的氧氣400l
,問(wèn)此瓶氧氣可供多少天使用?設(shè)使用時(shí)溫度不變。解:根據(jù)題意,可確定研究對(duì)象為原來(lái)氣體、用去氣體和剩余氣體,設(shè)這三部分氣體的狀態(tài)參量分別為使用時(shí)的溫度為T(mén)設(shè)可供x天使用原有每天用量剩余分別對(duì)它們列出狀態(tài)方程,有
氣體對(duì)器壁的壓強(qiáng)是大量分子對(duì)容器不斷碰撞的統(tǒng)計(jì)平均效果。6-2
理想氣體壓強(qiáng)公式每個(gè)分子對(duì)器壁的作用所有分子對(duì)器壁的作用理想氣體的壓強(qiáng)公式1、分子可以看作質(zhì)點(diǎn)本身的大小比起它們之間的平均距離可忽略不計(jì)。2、除碰撞外,分子之間的作用可忽略不計(jì)。3、分子間的碰撞是完全彈性的。一、理想氣體的分子模型理想氣體的分子模型是彈性的自由運(yùn)動(dòng)的質(zhì)點(diǎn)。1、平均而言,沿各個(gè)方向運(yùn)動(dòng)的分子數(shù)相同。2、氣體的性質(zhì)與方向無(wú)關(guān),即在各個(gè)方向上速率的各種平均值相等。3、不因碰撞而丟失具有某一速度的分子。二、理想氣體的分子性質(zhì)平衡態(tài)下:三.理想氣體的壓強(qiáng)公式
(V,N,m)
平衡態(tài)下器壁各處壓強(qiáng)相同,選A1面求其所受壓強(qiáng)。i分子動(dòng)量增量i分子對(duì)器壁的沖量i分子相繼與A1面碰撞的時(shí)間間隔單位時(shí)間內(nèi)i分子對(duì)A1面的沖量則i分子對(duì)A1面的平均沖力所有分子對(duì)A1面的平均作用力壓強(qiáng)——分子的平均平動(dòng)動(dòng)能平衡態(tài)下氣體動(dòng)理論第一基本方程一、溫度的統(tǒng)計(jì)解釋溫度是氣體分子平均平動(dòng)動(dòng)能大小的量度6-3
溫度的統(tǒng)計(jì)解釋氣體動(dòng)理論第二基本方程例題:下列各式中哪一式表示氣體分子的平均平動(dòng)動(dòng)能?(式中M為氣體的質(zhì)量,m為氣體分子質(zhì)量,N為氣體分子總數(shù)目,n為氣體分子數(shù)密度,NA為阿伏加得羅常量)(A)(B)(C)(D)解:√例:(1)在一個(gè)具有活塞的容器中盛有一定的氣體。如果壓縮氣體并對(duì)它加熱,使它的溫度從270C升到1770C,體積減少一半,求氣體壓強(qiáng)變化多少?(2)這時(shí)氣體分子的平均平動(dòng)動(dòng)能變化多少?解:例)一容器中貯有理想氣體,壓強(qiáng)為0.010mmHg高。溫度為270C,問(wèn)在1cm3中有多少分子,這些分子動(dòng)能之總和為多少?已知:求:N=?EK=?解:每個(gè)分子平均平動(dòng)動(dòng)能為:故N個(gè)分子總動(dòng)能:二、氣體分子的方均根速率大量分子速率的平方平均值的平方根
氣體分子的方均根速率與氣體的熱力學(xué)溫度的平方根成正比,與氣體的摩爾質(zhì)量的平方根成反比。例題6:一瓶氮?dú)夂鸵黄亢饷芏认嗤肿悠骄絼?dòng)動(dòng)能相同,且處于平衡態(tài),則AT、P均相同。BT、P均不相同。CT相同,但DT相同,但√例題7:在密閉的容器中,若理想氣體溫度提高為原來(lái)的2倍,則A都增至2倍。B增至2倍,p增至4倍。D增至4倍,p增至2倍。C都不變?!桃弧⒆杂啥却_定一個(gè)物體的空間位置所需要的獨(dú)立坐標(biāo)數(shù)目。以剛性分子(分子內(nèi)原子間距離保持不變)為例6-4
能量均分定理理想氣體的內(nèi)能雙原子分子單原子分子平動(dòng)自由度t=3平動(dòng)自由度t=3轉(zhuǎn)動(dòng)自由度r=2三原子分子平動(dòng)自由度t=3轉(zhuǎn)動(dòng)自由度r=3y(x,y,z)azxbofxyz分子內(nèi)部要發(fā)生振動(dòng),在經(jīng)典范圍內(nèi)不考慮。剛性雙原子:i=3+2=5平動(dòng)轉(zhuǎn)動(dòng)剛性多原子:i=3+2+1=6平動(dòng)轉(zhuǎn)動(dòng)繞軸自轉(zhuǎn)二、能量均分定理氣體分子沿x,y,z三個(gè)方向運(yùn)動(dòng)的平均平動(dòng)動(dòng)能完全相等,可以認(rèn)為分子的平均平動(dòng)動(dòng)能均勻分配在每個(gè)平動(dòng)自由度上。平衡態(tài)下,不論何種運(yùn)動(dòng),相應(yīng)于每一個(gè)可能自由度的平均動(dòng)能都是能量按自由度均分定理如果氣體分子有i個(gè)自由度,則分子的平均動(dòng)能為三、理想氣體的內(nèi)能分子間相互作用可以忽略不計(jì)分子間相互作用的勢(shì)能=0理想氣體的內(nèi)能=所有分子的熱運(yùn)動(dòng)動(dòng)能之總和1mol理想氣體的內(nèi)能
(摩爾內(nèi)能)為一定質(zhì)量理想氣體的內(nèi)能為溫度改變,內(nèi)能改變量為例就質(zhì)量而言,空氣是由76%的N2,23%的O2和1%的Ar三種氣體組成,它們的分子量分別為28、32、40??諝獾哪栙|(zhì)量為28.910-3kg,試計(jì)算1mol空氣在標(biāo)準(zhǔn)狀態(tài)下的內(nèi)能。解:在空氣中N2質(zhì)量摩爾數(shù)O2質(zhì)量摩爾數(shù)Ar質(zhì)量摩爾數(shù)1mol空氣在標(biāo)準(zhǔn)狀態(tài)下的內(nèi)能總結(jié)幾個(gè)容易混淆的慨念:1.分子的平均平動(dòng)動(dòng)能:3.質(zhì)量為M的理想氣體內(nèi)能:4.單位體積內(nèi)氣體分子的平動(dòng)動(dòng)能之和:5.單位體積內(nèi)氣體分子的動(dòng)能之和:2.分子的平均動(dòng)能:n為單位體積內(nèi)的分子數(shù)例題8:如果氫氣、氦氣的溫度相同,摩爾數(shù)相同,那么著兩種氣體的1、平均動(dòng)能是否相等?2、平均平動(dòng)動(dòng)能是否相等?3、內(nèi)能是否相等?氫氣i=5氦氣i=3不等相等不等例題9:H2的溫度為00C,試求:1、分子的平均平動(dòng)動(dòng)能。2、分子的平均轉(zhuǎn)動(dòng)動(dòng)能。3、分子的平均動(dòng)能。例題9:H2的溫度為00C,試求:4、分子的平均能量。例3:儲(chǔ)有氫氣的容器以某速度v作定向運(yùn)動(dòng)。假設(shè)該容器突然停止,全部定向運(yùn)動(dòng)動(dòng)能都變?yōu)闅怏w分子熱運(yùn)動(dòng)動(dòng)能,此時(shí)容器中氣體的溫度上升0.7K。求:(1)容器作定向運(yùn)動(dòng)的速度v(2)容器中氣體分子的平均動(dòng)能增加了多少?解:(1)對(duì)于H2i=5
(2)設(shè)氫氣的總質(zhì)量為M6-5麥克斯韋分子速率分布定律
平衡態(tài)下,理想氣體分子速度分布(distribution)是有規(guī)律的,這個(gè)規(guī)律叫麥克斯韋速度分布律。若不考慮分子速度的方向,則叫麥克斯韋速率分布律。一、氣體分子的速率分布分布函數(shù)研究氣體分子的速率分布把速率分成若干相等區(qū)間求氣體在平衡態(tài)下分布在各區(qū)間內(nèi)的分子數(shù)各區(qū)間的分子數(shù)占?xì)怏w分子總數(shù)的百分比分布表分布曲線(xiàn)分布函數(shù)速率區(qū)間(m/s)分子數(shù)的百分比(%)100以下1.4100~2008.1200~30016.5300~40021.4400~50020.6500~60015.1600~7009.2700~8004.8800~9002.0900以上0.9即:面積大小代表速率v附近dv區(qū)間內(nèi)的分子數(shù)占總分子數(shù)的比率△v0時(shí),即取dv為速率區(qū)間分子的速率分布函數(shù):速率v附近△v區(qū)間內(nèi)的分子數(shù)占總分子數(shù)的比率的極限f(v)f(vp)vvpvv+dvv1v2dNN面積=
出現(xiàn)在v~v+dv區(qū)間內(nèi)的概率分子出現(xiàn)在v1~v2區(qū)間內(nèi)的概率曲線(xiàn)下的總面積恒等于1f(v)又稱(chēng)概率密度:某一分子在速率v附近的單位速率區(qū)間內(nèi)出現(xiàn)的概率。某一分子出現(xiàn)在v1~v2區(qū)間內(nèi)的概率:某一分子出現(xiàn)在v~v+dv區(qū)間內(nèi)的概率:例:求分布在v1~v2速率區(qū)間的分子平均速率。解:對(duì)于g(v):對(duì)v1~v2內(nèi)分子求平均:對(duì)所有分子求平均:1860年,Maxwell從理論上得出:在平衡態(tài)下的理想氣體,無(wú)外力場(chǎng)作用時(shí):三、麥克斯韋分子速率分布定律英國(guó)物理學(xué)家、數(shù)學(xué)家。11月13日出生時(shí),是法拉第發(fā)現(xiàn)電磁感應(yīng)后2個(gè)多月。15歲在“愛(ài)丁堡皇家學(xué)報(bào)”發(fā)表論文,1854年從劍橋大學(xué)畢業(yè),卡文迪什試驗(yàn)室首任主任。麥克斯韋像麥克斯韋(1831-1879)簡(jiǎn)介測(cè)定分子速率分布的實(shí)驗(yàn)裝置圓筒(直徑D)不轉(zhuǎn),分子束的分子都射在P處;圓筒轉(zhuǎn)動(dòng),分子束中速率不同的分子將射在不同位置.f(v)vVp1、最概然速率Vp:令得四、三種速率:與f(v)極大值對(duì)應(yīng)的速率。2、平均速率對(duì)于v連續(xù)分布:3、方均根速率對(duì)于v連續(xù)分布:例:如圖:兩條曲線(xiàn)是氫和氧在同一溫度下分子速率分布曲線(xiàn),判定哪一條是氧分子的速率分布曲線(xiàn)?0f(v)v都與成正比,與成反比。0f(v)vvp例如,在270C時(shí),H2和O2分子的方均根速率分別為1.93×103m/s和486m/s。對(duì)于一個(gè)系統(tǒng)而言,即T和Mmol相同時(shí)1、溫度與分子速率:五、麥克斯韋速率分布曲線(xiàn)的性質(zhì)2、質(zhì)量與分子速率:Mmol10f(v)vvpvpT相同Mmol2T2T10f(v)vvpvpMmol相同例:用總分子數(shù)N,氣體分子速率v和速率分布函數(shù)f(v)表示下列各量:(2)速率大于v0的那些分子的平均速率。(3)多次觀察某一個(gè)分子的速率,發(fā)現(xiàn)其速率大于v0的幾率=(1)速率大于v0的分子數(shù):1.2.3.4.5.6.7.8.9.說(shuō)明以下各式的物理意義:6-6玻爾茲曼能量分布律
平衡態(tài)下的理想氣體的麥克斯韋速率分布律:在v~v+dv其指數(shù)僅包含分子運(yùn)動(dòng)動(dòng)能相應(yīng)于分子不受外力場(chǎng)的影響若氣體分子處于恒定的外力場(chǎng)(如重力場(chǎng))中氣體分子在空間位置不再呈均勻分布?xì)怏w分子分布規(guī)律如何波爾茲曼從兩個(gè)方面將麥克斯韋速率分布推廣到有外力場(chǎng)作用的情況:(1)分子在外力場(chǎng)中應(yīng)以總能量E=Ek+Ep取代(2)粒子的分布不僅按速率區(qū)間v~v+dv
分布,還按位置區(qū)間x~x+dx、y~y+dy、z~z+dz分布
沒(méi)有外力場(chǎng)作用時(shí),分子在空間位置的分布均勻,即在容器中分子數(shù)密度處處相等;有外力場(chǎng)作用時(shí),分子在空間位置的分布不均勻,即在不同位置處分子數(shù)密度不同;推廣:(1)氣體分子處于外力場(chǎng)中,分子能量E=Ep+Ek(2)粒子分布不僅按速率區(qū)v~v+dv間分布,還應(yīng)按位置區(qū)間x~x+dx、y~y+dy、z~z+dz分布分子數(shù)密度的玻爾茲曼分布假定體積元dxdydz中的分子數(shù)仍含有各種速率的分子,且遵守麥克斯韋分布律在速率區(qū)間v~v+dv中的分子數(shù)為dN則:(1)等寬度區(qū)間,能量越低的粒子出現(xiàn)的概率越大說(shuō)明:(2)隨著能量升高,粒子出現(xiàn)的概率按指數(shù)率減小。粒子優(yōu)先占據(jù)能量小的狀態(tài)重力場(chǎng)中粒子按高度的分布重力場(chǎng)中的氣壓公式()每升高10米,大氣壓強(qiáng)降低133Pa。近似符合實(shí)際,可粗略估計(jì)高度變化。例氫原子基態(tài)能級(jí)E1=-13.6eV,第一激發(fā)態(tài)能級(jí)E2=-3.4eV,求出在室溫T=270C時(shí)原子處于第一激發(fā)態(tài)與基態(tài)的數(shù)目比。解:在室溫下,氫原子幾乎都處于基態(tài)。6-7分子碰撞和平均自由程
一、碰撞:1、氣體運(yùn)動(dòng)軌跡為一折線(xiàn):一般為每秒幾百米。如:N2分子在270C時(shí)的平均速率為476m.s-1.矛盾氣體分子熱運(yùn)動(dòng)平均速率高,但氣體擴(kuò)散過(guò)程進(jìn)行得相當(dāng)慢。擴(kuò)散速率(位移量/時(shí)間)平均速率(路程/時(shí)間)克勞修斯的解釋?zhuān)悍肿幼杂沙?氣體分子兩次相鄰碰撞之間自由通過(guò)的路程。分子碰撞頻率:在單位時(shí)間內(nèi)一個(gè)分子與其他分子碰撞的次數(shù)。
這個(gè)矛盾是克勞休斯解決的:常溫常
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 我的家鄉(xiāng)敘事課程設(shè)計(jì)
- 中西醫(yī)執(zhí)業(yè)醫(yī)師模擬試卷16
- 2024年設(shè)備維護(hù)檢修規(guī)程第一冊(cè)
- 2024年稅務(wù)師題庫(kù)附完整答案
- 2024心理活動(dòng)策劃書(shū)(33篇)
- 農(nóng)民合同范本(2篇)
- 創(chuàng)新創(chuàng)業(yè)大賽贊助合同(2篇)
- DB33T 2270-2020 通道兩側(cè)山體彩色林營(yíng)建技術(shù)規(guī)程
- DB33T 2230-2019 城市社區(qū)工作者服務(wù)規(guī)范
- 2025關(guān)于勞動(dòng)合同的變更原則
- 職業(yè)生涯規(guī)劃班會(huì)課教案設(shè)計(jì)
- 微觀經(jīng)濟(jì)學(xué)(對(duì)外經(jīng)濟(jì)貿(mào)易大學(xué))智慧樹(shù)知到期末考試答案2024年
- (正式版)HGT 6277-2024 甲醇制烯烴(MTO)級(jí)甲醇
- 注射用更昔洛韋的臨床療效研究
- 2023年1月廣東省自考00634廣告策劃試題及答案含解析
- 2024年青海西部機(jī)場(chǎng)集團(tuán)青海機(jī)場(chǎng)有限公司招聘筆試參考題庫(kù)含答案解析
- 中國(guó)綠色建筑現(xiàn)狀與未來(lái)展望
- 河南省洛陽(yáng)市2023-2024學(xué)年高二上學(xué)期期末考試英語(yǔ)試題(解析版)
- 超聲檢查醫(yī)療糾紛的防范培訓(xùn)課件
- 采購(gòu)管理的流程與原則
- 2022-2023學(xué)年山東省東營(yíng)市東營(yíng)區(qū)七年級(jí)(上)期末歷史試卷(五四學(xué)制)(附答案詳解)
評(píng)論
0/150
提交評(píng)論