版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter2OpticalSignalGenerationVocabularyChapter22SOEI,HUSTOpticaltransmitter:光發(fā)射機LED:發(fā)光二極管LD:激光二極管Spontaneousemission:自發(fā)輻射Stimulatedemission:受激發(fā)射Stimulatedabsorption:受激吸收Boltzmanstatistics:玻爾茲曼統(tǒng)計分布Thermalequilibrium:熱平衡Spectraldensity:光譜密度Populationinversion:粒子數(shù)反轉Fermi-Diracdistribution:費米狄拉克分布Conductionband:導帶Valenceband:價帶Forward-biased:正向偏置Junction:結Fermilevel:費米能級Bandgap:帶隙Heavydoping:重摻雜Homojunction:同質結Heterojunction:異質結Doubleheterostructure:雙異質結recombination:復合Claddinglayer:包層Augerrecombination:俄歇復合Kineticenergy:動能Nonradiativerecombination:非輻射復合Surfacerecombination:表面復合Internalquantumefficiency:內量子效率Directbandgap:直接帶隙Indirectbandgap:非直接帶隙Carrierlifetime:載流子壽命Latticeconstant:晶格常數(shù)Ternaryandquaternarycompound:三元系和四元系化合物Substrate:襯底LPE:液相外延VPE:汽相外延MBE:分子束外延MOCVD:改進的化學汽相沉積MQW:多量子阱Electron-holepairs電子空穴對Externalquantumefficiency外量子效率Chapter23SOEI,HUSTFresneltransmissivity菲涅耳透射率Power-conversionefficiency功率轉換效率Wall-plugefficiency電光轉換效率Responsivity響應度Rateequation速率方程Surface-emitting表面發(fā)射Beamdivergence光束發(fā)散Edge-emitting邊發(fā)射Resonantcavity諧振腔Gaincoefficient增益系數(shù)Differentialgain微分增益Laserthreshold激光閾值Thresholdcurrent閾值電流Groupindex群折射率Externalcavity外腔VCSEL:verticalcavitysurface-emittinglasers垂直腔表面發(fā)射激光器Photonlifetime光子壽命Slopeefficiency斜率效率Differentialquantumefficiency微分量子效率Linewidthenhancementfactor線寬加強因子Broadarea寬面Stripegeometry條形Diffusion擴散Index-guided折射率導引Ridgewaveguidelaser脊波導激光器Buriedheterostructure掩埋異質結Lateral側向Transverse橫向SLM:SingleLongitudinalmode單縱模MSR:Modesuppressionratio模式抑制比DFB:DistributedFeedback分布式反饋Braggdiffraction布拉格衍射Braggcondition布拉格條件DBR:distributedBraggreflector分布式布拉格反射器Phase-shiftedDFBlaser相移DFB激光器Gaincoupled增益耦合Coupledcavity耦合腔Characteristicstemperature特征溫度OOK開關鍵控DPSK差分相移鍵控QPSK正交相移鍵控QAM正交幅度調制Dualpolarization雙偏振態(tài)(偏振復用)Chapter24SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter25SOEI,HUST2.1.1SchematicDiagramofOpticalTransmittersBinarytosingleCoding/linecodingModulatorOpticalSourceDrivingCircuitPCMChannelcouplerOpticalsignaloutputChapter26SOEI,HUSTBiasedcurrentModulationcurrent(≥10Gbit/s)ModulationcurrentBiasedcurrent(≤2.5Gbit/s)DirectModulationExternalModulationChapter27SOEI,HUSTstability:power&wavelengthreliability:>25years(PouttoPout/2)smallemissiveareacompatiblewithfibercoredimensionsrightwavelengthrange0.85μm:GaAlAs/GaAs1.31μm,1.55μm:InP/InGaAsPnarrowlinewidth→dispersion,phasenoiseeasytorealizedirectmodulationhighefficiency&lowthreshold:MQW-LD,Ith~10mAMQWDFBLD2.1.2RequirementsforOpticalSourceChapter28SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter29SOEI,HUST1.ThreeFundamentalTransitionProcesses
SpontaneousEmission→LED
StimulatedEmission→LD,SOA
30-受激吸收.swf
→PIN,APD
LightEmission2.2.1EnergyBandsinSemiconductorStimulatedEmissionSpontaneousEmissionStimulatedAbsorptionChapter210SOEI,HUSTE2N2N1E1:spectraldensityInthermalequilibrium,accordingtoBoltzmannstatistics:kB:BoltzmannconstantT:absolutetemperatureAccordingtoPlanck’sformula:2.EmissionandAbsorptionRatesChapter211SOEI,HUSTvisibleornear-infraredregion,roomtemperatureN2>N1,Rstim>Rabs(populationinversion)Thermalequilibrium laseroperation ?Operationconditionforlaser:Externalpumpingsourceisneeded:injectioncurrent,pumpinglightetc.
Einstein’scoefficientsChapter212SOEI,HUST3.RecombinationbetweenElectronsandHolesEfc,EfvaretheFermilevelsinconductionbandandvalenceband,respectivelyTheoccupationprobabilityforelectronsintheconductionandvalencebandsisgivenbytheFermi-Diracdistributionsrespectively:Conductionandvalencebandsofasemiconductor.Chapter213SOEI,HUSTρcv:jointdensityofstates,whichdescribesthenumberofstatesperunitvolumeperunitenergyrangeEg:bandgapmr:reducedmassmc,mv:effectivemassesofelectrons&holesinconductionandvalencebands,respectivelyChapter214SOEI,HUSTpopulation-inversioncondition:inthermalequilibrium:pumpingenergyintosemiconductorbyinjectingcurrent:Togetlaseroutput,Chapter215SOEI,HUST2.2.2p-nJunctions1.TypeofSemiconductorIntrinsicsemiconductor:undoped,Fermilevelislyinginthemiddleofthebandgap.n-typesemiconductor:Fermilevelmovestowardtheconductionbandasthedopantconcentrationincreases.p-typesemiconductor:Fermilevelmovestowardthevalencebandasthedopantconcentrationincreases.Chapter216SOEI,HUSTinthermalequilibriumunderforwardbiased2.p-nJunctionsunderforwardbiased:built-inelectricfieldisreduceddiffusionofelectronsandholesacrossthejunctionelectronsandholesarepresentsimultaneouslyindepletionregiongeneratelightthroughspontaneousemissionorstimulatedemissioninthermalequilibrium:
theFermilevelmustbecontinuousacrossthep–njunctionachievedthroughdiffusionofelectronsandholesacrossthejunction.Chapter217SOEI,HUSTHomojunction:equalbandgapsthesamesemiconductormaterialwideregionforelectron-holerecombinationdifficulttoobtainhighcarrierdensityHeterojunction:differentbandgapsDouble-heterojunction:sandwichingathinlayerbetweenthep-typeandn-typelayers,andthebandgapofthesandwichlayerissmallerthanthelayerssurroundingit.3.Homojunction&HeterojunctionChapter218SOEI,HUSTEnergy-banddiagramof(a)homostructureand(b)double-heterostructurep–njunctionsinthermalequilibrium(top)andunderforwardbias(bottom).Chapter219SOEI,HUSTActivelayer:lightisgeneratedinsideitasaresultofelectron-holerecombinationsmallerbandgap→largerrefractiveindex→waveguide(1D)Heterojunction:confinementofcarriers&opticalfield0.85μm:cladding/active:GaAlAs/GaAs1.31μm,1.55μm:cladding/active:InP/InGaAsPSimultaneousconfinementofchargecarriersandopticalfieldinadoubleheterostructuredesign.Chapter220SOEI,HUST1.Electron-holeRecombinationDefects&surfacerecombinationAugerNonradiativerecombination2.2.3NonradiativeRecombinationChapter221SOEI,HUST2.InternalQuantumEfficiencyRrr:radiativerecombinationrateRnr:nonradiativerecombinationrateRtot:totalrecombinationrateτ:recombinationtimeNonradiativerecombination,especiallyAugerrecombination(temperaturedependent)isharmfultodevices!positivefeedback
Chapter222SOEI,HUSTE0E0k1k2direct-bandgap(GaAs,InP)indirect-bandgap(Si,Ge)3.CarrierLifetimeA:defects&surfaceB:spontaneousradiationC:Augercoefficientk1=k2Chapter223SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter224SOEI,HUST2.3.1AmplitudeandPhaseConditionsAdvantages(comparedtoLED):emittingrelativelyhighpower(to100mW)narrowangularspreadnarrowspectralwidthdirectmodulationathighfrequency(to10GHz)1.ComponentsandAdvantagesofLDs:Components:Chapter225SOEI,HUSTPeakgainofmedium:
when :differentialgain(gaincrosssection) :injectedcarrierdensity :transparentcarrierdensity:thresholdcarrierdensityNTisequaltoNth?2.OpticalGainChapter226SOEI,HUSTGainspectrumofa1.3-μmInGaAsPlaseratseveralcarrierdensitiesN.Variationofpeakgaingp
withN.Thedashedlineshowsthequalityofalinearfitinthehighgainregion.Chapter227SOEI,HUSTFeedbackR1R2n0=1n3.FeedbackandLaserThresholdChapter228SOEI,HUSTThreshold
modelofLDsChapter229SOEI,HUSTAmplitudeconditionPhaseconditionspacingbetweenoscillatingfrequenciesoscillatingfrequenciesthresholdgainMLMChapter230SOEI,HUST2.3.2LDStructures1.Broad-areaLDsAbroad-areasemiconductorlaser.Theactivelayer(hatchedregion)issandwichedbetweenp-typeandn-typecladdinglayersofahigher-bandgapmaterial.Lightconfinementmechanisminthedirectionperpendiculartothejunctionplaneintroducedbydoubleheterostructure
XYdistributioninnearfieldChapter231SOEI,HUSTnosuchlight-confinementmechanisminthelateraldirectionparalleltothejunctionplane.thelightgeneratedspreadsovertheentirewidthofthelaser.arelativelyhighthresholdcurrentandaspatialpatternthatishighlyellipticalandthatchangesinanuncontrollablemannerwiththecurrent.Spatialmodedistributioninfarfield?Chapter232SOEI,HUST2.StripeLDsGain-guidedsemiconductorlasersCrosssectionoftwostripe-geometrylaserstructuresusedtodesigngain-guidedsemiconductorlasersandreferredtoas(a)oxidestripeand(b)junctionstripe.
XYChapter233SOEI,HUSTsolvethelight-confinementproblembylimitingcurrentinjectionoveranarrowstripe.thespotsizeisstillnotstableasthelaserpowerisincreased.Chapter234SOEI,HUSTIndex-guidedsemiconductorlasersCrosssectionoftwoindex-guidedsemiconductorlasers:(a)ridge-waveguidestructureforweakindexguiding;(b)buriedheterostructureforstrongindexguiding.
XYChapter235SOEI,HUSTWhenlightisconfinedintoacavitysmallerthanitswavelength(~1μm),itbehavesasaparticle(quantum)ratherthanasawave.3.Multi-Quantum-WellLDsInMQWstructure,oftenanumberofquantumwellsareusedoneontopofanother.Theseparatinglayersbetweenthemareverythin(~10nm)andhavedifferentbandgaps.TheMQWstructurecanreducethelasingthreshold,andpreventslateralmodesforming.AndtheMQWlasershaveanarrowerlinewidththanconventionalstructures.Chapter236SOEI,HUSThomojunctionDoubleheterostructureStripegeometryMulti-quantum-wellRelativelystrongerconfinementofinjectedcarriersandoutputphotons,thuslowerthresholdcurrentandhigherslopeefficiency!Chapter237SOEI,HUSTSideModeSuppressionRatio(SMSR):orMLMLossSLM2.3.3ControlofLongitudinalModesChapter238SOEI,HUSTFeedbackisnotlocalizedatthefacetsbutisdistributedthroughoutthecavitylength.Anditcanbeachievedthroughaninternalbuilt-ingratingthatleadstoaperiodicvariationofthemodeindex.FeedbackoccursbymeansofBraggdiffraction,aphenomenonthatcouplesthewavespropagatingintheforwardandbackwarddirections.ThereforemodeselectivityoftheDFBlaseroccursonlyforwavelengthsλBsatisfying
theBraggcondition:1.DistributedFeedback(DFB)LasersChapter239SOEI,HUST2.SampledGratingDBRLasersDBR:distributedBraggreflectorChapter240SOEI,HUST3.Cleaved-coupledCavityLasersBycleavingaconventionalmulti-longitudinal-modesemiconductorlaserinthemiddle,itisdividedintotwosectionsandseparatedbyanarrowairgap(~1μm).Thereflectivityofcleavedfacets(~30%)allowsenoughcouplingbetweenthetwosectionsaslongasthegapisnottoowide.Possibletotunetheoutputwavelengthoveratuningrange~20nmbyvaryingthecurrentinjectedintooneofthecavitysectionsactingasamodecontroller.Tuningisnotcontinuous,sinceitcorrespondstosuccessivemodehops.Chapter241SOEI,HUST4.ExternalCavityLasers
Consistingofalaserdiode(LD),adiffractiongrating,afocuslensandamirror.Bychangingtheangleofthemirror,thelasingwavelengthistuned.Byoptimallyaligningthesecomponents,alasingcavityiscreatedthathasnomodehopswhenthewavelengthischanged.conventionalChapter242SOEI,HUSTR>99%5.VCSELs(VerticalCavitySurfaceEmittingLasers)Chapter243SOEI,HUSTThemirrorstacksaremadeofalternatinglayersofmaterialofdifferentrefractiveindices,formingaBragggratingtoobtainthewavelengthselection.Theactiveregionisveryshort,whichmeansthatthemirrorsshouldhavearelativelyhighreflectivity.Theoxideconfinementtechniqueinwhichaninsulatingaluminum-oxidelayer,actingasadielectricaperture,confinesboththecurrentandtheopticaltransversemodes.Thelowdivergencecircularlightbeamallowsforeasyandefficientcouplingtoafiber.Typicalcoupledoutputpowerisafewmilliwatts.Chapter244SOEI,HUST2.3.4NoiseandLinewidth1.NoiseMechanismsinLDsIntensity,phase,andfrequencyofLDswillfluctuateevenwhenbiasedataconstantcurrent.Noisemechanisms:eachspontaneouslyemittedphotonaddstothecoherentfield(establishedbystimulatedemission)asmallfieldcomponentwhosephaseisrandom,andthusperturbsbothamplitudeandphaseinarandommanner.Intensityfluctuationsleadtoalimitedsignal-to-noiseratio(SNR),whilephasefluctuationsleadtoafinitespectrallinewidth.Chapter245SOEI,HUST2.LinewidthandRelatedMeasurementThemodifiedScholow-Townsformulagivestherelationshipbetweenthelinewidthandspontaneousemission:
whereP,photondensityinsidethelasercavity;Rsp,spontaneousemissionfactor;βc,linewidthenhancementfactor.SpectralwidthandlinewidthChapter246SOEI,HUSTCoherencetimeandcoherencelengthcanallberelatedtothelinewidth.Coherencelengthdescribesthepropagationdistanceoverwhichalightwavesignalmaintainsitscoherence,wherevgisthegroupvelocityoftheopticalsignal.Foralightsourcewiththelinewidthof10kHz,thecoherencelengthisapproximately~30km.Coherencetimeisthetimeintervalwithinwhichthephaseofalightwaveisstillpredictable.Thelinewidthmeasurementisimplementedbythedelayedself-heterodynetechniques.IfthedifferentialdelayoftheMach-Zehnderinterferometerismuchlongerthanthecoherencetimeoftheopticalsignal,thecorrespondingcomponentsviadifferentpathscancombine
incoherentlyatthesecondopticalcoupler(OC).Itresemblesthemixingbetweenlightsfromtwoindependentlasersourceswithidenticalspectrallinewidth.Chapter247SOEI,HUSTESALinewidthmeasurementsetupOCOCChapter248SOEI,HUSTFrequencytranslationandlinewidthrelationsindelayedself-heterodynedetectionAnacousto-opticfrequencymodulator(AOFM)isusedasafrequencyshifterinonearmtoavoidthehighnoiselevelsinlow-frequencyregionofmostelectricalspectrumanalyzer(ESA).TheAOFMcancauseafrequencyshiftoffIFontheorderofafewhundredmegahertz.Thustheheterodynedetectionoftheopticalsignalsarerealizedinthephotodetector.Chapter249SOEI,HUSTIfthenormalizedRFspectraldensitymeasuredbyESAisSIF(f),theopticalsignalpowerspectraldensitySp,s(f)willsatisfythefollowingauto-convolution:TrueorFalse?Chapter250SOEI,HUST1.以下論述正確的是:()A、非輻射復合會影響發(fā)光器件的發(fā)光效率;B、正向偏置的PN結中導帶和價帶的準費米能級趨于一致;C、半導體材料要發(fā)光,必須實現(xiàn)粒子數(shù)的反轉;D、LD中最初的光子來源于內部的自發(fā)輻射;E、電子與空穴復合不一定產生光子;F、雙異質結結構提高了半導體光源的量子效率;G、工作于1.55m處的半導體光源有源層材料為InP;
H、溫度升高發(fā)光器件的發(fā)光效率會下降;
I、間接帶隙半導體材料中非輻射復合效率高于輻射復合效率,不適合用作光源材料。Chapter251SOEI,HUST1.以下論述正確的是:()
A、非輻射復合會影響發(fā)光器件的發(fā)光效率;
B、正向偏置的PN結中導帶和價帶的準費米能級趨于一致;C、半導體材料要發(fā)光,必須實現(xiàn)粒子數(shù)的反轉;
D、LD中最初的光子來源于內部的自發(fā)輻射;
E、電子與空穴復合不一定產生光子;
F、雙異質結結構提高了半導體光源的量子效率;G、工作于1.55m處的半導體光源有源層材料為InP;
H、溫度升高發(fā)光器件的發(fā)光效率會下降;
I、間接帶隙半導體材料中非輻射復合效率高于輻射復合效率,
不適合用作光源材料。Chapter252SOEI,HUST2.3.5CWCharacteristicsofLDs
1.RateEquationsForaSLMlaser,therateequations:P,N:numberofphotons&carriersNetrateofstimulatedemission—opticalgain:Photonlifetime:gm:peakgainofmaterial:gaincrosssection,ordifferentialgain:transparentcarriernumberChapter253SOEI,HUSTForI>Ith,R1=R22.CWOperationConditionsChapter254SOEI,HUSTThresholdofP-IcurvesSpontaneousemissionStimulatedemissionI0:constant,T0:characteristictemperatureGaAs:T0=120K,InGaAsP:T0=50~70KBendingofP-Icurves
Rnr:mainlydependingonAugerrecombinationinInGaAsPLDsSolution:built-inthermoelectriccoolerisusedtodealwithtemperaturesensitivitiesofInGaAsPLDs3.P-ICurvesChapter255SOEI,HUSTInternalquantumefficiency:Slopeefficiency:Differentialquantumefficiency:Externalquantumefficiency:wall-plugefficiency:GaAslasers:InGaAsPlasers:4.EfficienciesChapter256SOEI,HUST2.3.6ModulationResponseofLDsSmall-signalmodulation:Frequencyresponse:1.Small-SignalModulationModulationbandwidthChapter257SOEI,HUSTModulationresponseofalaserasafunctionofmodulationfrequencyatseveralbiaslevels.theefficiencyisreducedwhenthemodulationfrequencyexceedsΩR
byalargeamount.Chapter258SOEI,HUST2.Large-SignalModulationExternalmodulationforhighspeedtransmission!Frequencychirp
βc:amplitude-phasecouplingparameter,forbulkmaterial:4~8,MQW:~3.frequencyshift:leadingedge:thelongitudinalmodefrequencyshiftstowardtheblue
side.trailingedge:shiftstowardtheredside.
Chapter259SOEI,HUSTElectro-opticaldelay&relaxationoscillation
Whenpumpingpowerisappliedtothelaser,theupperenergystatepopulationbuildsupuntilaninversionoccursandlasingcancommence.Lasingcandepletetheupperenergystateveryquickly.Andifpumpingisn'tquitefastenough,lasingwillmomentarilystop.Verysoonafterwardsitwillstartagainasthepumpbuildsupapopulationinversionagain.Chapter260SOEI,HUSTA、LD的激射波長一定是自發(fā)輻射的峰值波長;B、條形激光器中也存在雙異質結結構;C、雙異質結中對載流子的限制作用是因為存在內建折射率波導;D、通過選擇合適的組分x和y,基于In1-xGaxAsyP1-y的半導體光源可設計工作于0.85m處;E、LD有諧振腔,而LED沒有;F、LD的P-I曲線有閾值,而LED的P-I曲線沒有閾值;G、LD和SOA中最初的光子均來源于自發(fā)輻射;H、激光器的小信號調制帶寬會隨著偏置電流的增加而增大;I、偏置電流選擇合理可適當減小張馳振蕩和電光延時效應的影響;J、單縱模LD用作光源時,色散容限大。
2.以下關于半導體材料和發(fā)光機理論述錯誤的是:TrueorFalse?Chapter261SOEI,HUST
A、LD的激射波長一定是自發(fā)輻射的峰值波長;B、條形激光器中也存在雙異質結結構;
C、雙異質結中對載流子的限制作用是因為存在內建折射率波導;
D、通過選擇合適的組分x和y,基于In1-xGaxAsyP1-y的半導體光源可設計工作于0.85m處;E、LD有諧振腔,而LED沒有;F、LD的P-I曲線有閾值,而LED的P-I曲線沒有閾值;
G、LD和SOA中最初的光子均來源于自發(fā)輻射;H、激光器的小信號調制帶寬會隨著偏置電流的增加而增大;I、偏置電流選擇合理可適當減小張馳振蕩和電光延時效應的影響;J、單縱模LD用作光源時,色散容限大。
2.以下關于半導體材料和發(fā)光機理論述錯誤的是:Chapter262SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter263SOEI,HUST2.4.1BasicConcepts1.DigitalModulationLDdigitalmodulationFordirectlymodulatedLD,biasednearthreshold!Tomitigatetheelectro-opticaldelayandrelaxationoscillation.Tosuppressthepatterneffect.Inducingrelativelylowextinctionratioandlargeshotnoise.Chapter264SOEI,HUST2.DigitalLogicElectricalLevel
0 1 TTL:0~0.8V 2.0~5.0V (-5V)ECL:-1.75V -0.85 V (+5V)PECL:+3.25V +4.15 V3.ExtinctionRatioPP1P00tChapter265SOEI,HUST4.Source-fiberCoupling
5.Packaging
sourcefiberRfcoatinglensedfiberdiesubmountPDheatsinkTECcoolerfibermetalshellTEC(ThermallyExpandCore)FiberChapter266SOEI,HUSTChapter267SOEI,HUST2.4.2Drivingandmodulationcircuits1.DigitalModulationCircuitwithAPCforLDT1和T2輪流截止和導通,避免載流子恢復時間的影響,可工作于高速率;射極耦合電路為恒流源,總電流可保持不變,噪聲??;由于T2和T3導通電壓的負溫度特性,可另加兩個二極管D1、D2對T2、T3進行補償,使溫度變化時驅動電流保持恒定。Chapter268SOEI,HUST熱敏電阻RT接在電橋的一個臂上;在設定溫度下,電橋處于平衡狀態(tài),制冷器沒有電流流過;由于熱敏電阻具有負的溫度系數(shù),溫度升高時電橋平衡被破壞,制冷器開始工作,從而可使得LD的結溫不超過設定溫度。由于VT的單向導通特性,圖示電路中的制冷器只能工作在單一模式(制冷或加熱)2.ATCCircuitChapter269SOEI,HUSTChap.2OpticalSignalGeneration2.1ComponentsofOpticalTransmitters2.2FundamentalofLightEmittedbySemiconductor2.3Semiconductorlasers(LaserDiodes)andTheirCharacteristics2.4TransmitterDesign2.5ExternalModulationandAdvancedModulationFormatsChapter270SOEI,HUST2.5.1ExternalModulationandModulatorElectro-absorptionModulator(EAM)1.ExternalModulatorEAMmakesuseoftheFranz–Keldysheffect(夫蘭茲-凱耳什效應),accordingtowhichthebandgapofasemiconductordecreaseswhenanelectricfieldisappliedacrossit.Thus,atransparentsemiconductorlayerbeginstoabsorblightwhenitsbandgapisreducedelectronicallybyapplyinganexternalvoltage.Chapter271SOEI,HUSTCharacteristics:relativelylowdrivevoltages(typ.2V)cost-effectiveinvolumeproductionandeasytorealizeintegrationwavelength-dependentabsorptionrelativelylowdynamicextinctionratios(<10dB)residualchirplimitedopticalpower-handlingcapabilitiesChapter272SOEI,HUSTMach–ZehnderModulator(MZM)OpticalwaveguideMach-ZehnderInterferometerTravelling-WaveImpedancematchedelectrodestructureMZMsworkbytheprincipleofinterference,controlledbymodulatingtheopticalphase.Therefractiveindexofelectro-opticmaterialssuchasLiNbO3canbechangedbyapplyinganexternalvoltage.
Thereforephaseshiftcanbeintroducedthroughvoltage-inducedindex.Chapter273SOEI,HUST2.OperationPrincipleofMZMsPhaseshiftinthecorrespondingarm:Outputopticalfield:Themodulationvoltagethatisrequiredtochangethephaseinonemodulatorarmbyπ,andtherebyletstheMZMswitchfromfulltransmissiontofullextinction,iscalledswitchingvoltageVπ.Chapter274SOEI,HUSTV1(t)=-V2(t),thephasetermcanbeeliminatedinEout(t),knownasbalanceddrivingorpush–pulloperation.Outputopticalintensity:sinusoidalpowertransferfunctionChapter275SOEI,HUSTBiasedandmodulation(data)voltage:Single-driveMZMElectricalNRZdataChapter276SOEI,HUST2.5.2OpticalSignalGeneration1.NRZFormatReverseloadingForwardloading1111100000WaveformEyediagramChapter277SOEI,HUST2.
RZFormat33%RZNRZ67%CSRZChapter278SOEI,HUSTPulsecarvingDifferentRZformatscanbeimplementedby
pulsecarving:50%RZ--SinusoidallydrivingaMZMatthedatarateBbetweentheminimumandthemaximumtransmission,i.e.theamplitudeofclockisVπ/2andthebiasedvoltageis-Vπ/2.The
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年社區(qū)衛(wèi)生服務社區(qū)精神衛(wèi)生服務合同3篇
- 2024年跨境航空快遞代理協(xié)議條款一
- 2024年租賃合同中的租賃車輛技術參數(shù)
- 2024年貨物生產計件承包合同
- 2024年集體產權商業(yè)房產出售合同
- 2024年跨境物流運輸服務協(xié)議范本版
- 2024年高標準建筑工地環(huán)保砂石運輸合作協(xié)議3篇
- 2024年股權轉讓合同書模板
- 2024年高端水果采摘園租賃合作與投資合同3篇
- 2024年藥品倉儲物流藥師租賃服務協(xié)議版B版
- 連鑄工藝講義
- 急性藥物中毒的急救與護理課件
- 臘八國旗下演講稿2篇
- 《故鄉(xiāng)》學習提綱
- 河北省滄州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 中藥材及飲片性狀鑒別1總結課件
- 信息系統(tǒng)及信息安全運維服務項目清單
- 最新大壩固結灌漿生產性試驗大綱
- DB32-T 2948-2016水利工程卷揚式啟閉機檢修技術規(guī)程-(高清現(xiàn)行)
- 公司EHS(安全、環(huán)保、職業(yè)健康)檢查表
- 《模擬電子技術基礎》課程設計-心電圖儀設計與制作
評論
0/150
提交評論