版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.總體由編號(hào)01,,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開(kāi)始由左到右依次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.012.已知雙曲線的一條漸近線為,圓與相切于點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.3.已知,,,若,則()A. B. C. D.4.設(shè)等差數(shù)列的前n項(xiàng)和為,若,則()A. B. C.7 D.25.已知實(shí)數(shù)x,y滿足,則的最小值等于()A. B. C. D.6.已知函數(shù),若有2個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.7.已知復(fù)數(shù)滿足,則()A. B. C. D.8.若,則()A. B. C. D.9.?dāng)?shù)列滿足:,則數(shù)列前項(xiàng)的和為A. B. C. D.10.已知定義在上的函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.11.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.12.如圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對(duì)邊長(zhǎng)分別為,,,滿足,,則的面積為_(kāi)_.14.點(diǎn)在雙曲線的右支上,其左、右焦點(diǎn)分別為、,直線與以坐標(biāo)原點(diǎn)為圓心、為半徑的圓相切于點(diǎn),線段的垂直平分線恰好過(guò)點(diǎn),則該雙曲線的漸近線的斜率為_(kāi)_________.15.如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時(shí),三棱錐A﹣BCD的外接球的表面積為_(kāi)____.16.已知向量與的夾角為,||=||=1,且⊥(λ),則實(shí)數(shù)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知點(diǎn),且,滿足條件的點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)是否存在過(guò)點(diǎn)的直線,直線與曲線相交于兩點(diǎn),直線與軸分別交于兩點(diǎn),使得?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.18.(12分)在平面直角坐標(biāo)系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求曲線、的極坐標(biāo)方程;(2)在極坐標(biāo)系中,射線與曲線,分別交于、兩點(diǎn)(異于極點(diǎn)),定點(diǎn),求的面積19.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點(diǎn),分別是,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.20.(12分)根據(jù)國(guó)家統(tǒng)計(jì)局?jǐn)?shù)據(jù),1978年至2018年我國(guó)GDP總量從0.37萬(wàn)億元躍升至90萬(wàn)億元,實(shí)際增長(zhǎng)了242倍多,綜合國(guó)力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國(guó)GDP總量,表中,.326.4741.90310209.7614.05(1)根據(jù)數(shù)據(jù)及統(tǒng)計(jì)圖表,判斷與(其中為自然對(duì)數(shù)的底數(shù))哪一個(gè)更適宜作為全國(guó)GDP總量關(guān)于的回歸方程類型?(給出判斷即可,不必說(shuō)明理由),并求出關(guān)于的回歸方程.(2)使用參考數(shù)據(jù),估計(jì)2020年的全國(guó)GDP總量.線性回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.參考數(shù)據(jù):45678的近似值551484031097298121.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過(guò)合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢驗(yàn)方案:將產(chǎn)品每個(gè)一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說(shuō)明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說(shuō)明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為.(1)求的分布列及其期望;(2)(i)試說(shuō)明,當(dāng)越小時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;(ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).22.(10分)設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,為拋物線過(guò)焦點(diǎn)的弦,已知以為直徑的圓與相切于點(diǎn).(1)求的值及圓的方程;(2)設(shè)為上任意一點(diǎn),過(guò)點(diǎn)作的切線,切點(diǎn)為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個(gè)個(gè)體是01,選D.考點(diǎn):此題主要考查抽樣方法的概念、抽樣方法中隨機(jī)數(shù)表法,考查學(xué)習(xí)能力和運(yùn)用能力.2、D【解析】
由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.3、B【解析】
由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運(yùn)算計(jì)算.【詳解】由,得,則,,,所以.故選:B.【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運(yùn)算,掌握向量數(shù)量積的坐標(biāo)運(yùn)算是解題關(guān)鍵.4、B【解析】
根據(jù)等差數(shù)列的性質(zhì)并結(jié)合已知可求出,再利用等差數(shù)列性質(zhì)可得,即可求出結(jié)果.【詳解】因?yàn)?,所以,所以,所以,故選:B【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)及前項(xiàng)和公式,屬于基礎(chǔ)題.5、D【解析】
設(shè),,去絕對(duì)值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點(diǎn)睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.6、C【解析】
令,可得,要使得有兩個(gè)實(shí)數(shù)解,即和有兩個(gè)交點(diǎn),結(jié)合已知,即可求得答案.【詳解】令,可得,要使得有兩個(gè)實(shí)數(shù)解,即和有兩個(gè)交點(diǎn),,令,可得,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減.當(dāng)時(shí),,若直線和有兩個(gè)交點(diǎn),則.實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題主要考查了根據(jù)零點(diǎn)求參數(shù)范圍,解題關(guān)鍵是掌握根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的解法和根據(jù)導(dǎo)數(shù)求單調(diào)性的步驟,考查了分析能力和計(jì)算能力,屬于中檔題.7、A【解析】
由復(fù)數(shù)的運(yùn)算法則計(jì)算.【詳解】因?yàn)?,所以故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算.屬于簡(jiǎn)單題.8、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.9、A【解析】分析:通過(guò)對(duì)an﹣an+1=2anan+1變形可知,進(jìn)而可知,利用裂項(xiàng)相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項(xiàng)的和為,故選A.點(diǎn)睛:裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.10、D【解析】
先判斷函數(shù)在時(shí)的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個(gè)數(shù)的大小,然后根據(jù)函數(shù)在時(shí)的單調(diào)性,比較出三個(gè)數(shù)的大小.【詳解】當(dāng)時(shí),,函數(shù)在時(shí),是增函數(shù).因?yàn)?,所以函?shù)是奇函數(shù),所以有,因?yàn)椋瘮?shù)在時(shí),是增函數(shù),所以,故本題選D.【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問(wèn)題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.11、C【解析】
設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.【點(diǎn)睛】本題考查利用拋物線定義求焦半徑的問(wèn)題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.12、D【解析】
由半圓面積之比,可求出兩個(gè)直角邊的長(zhǎng)度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點(diǎn)睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
由二次方程有解的條件,結(jié)合輔助角公式和正弦函數(shù)的值域可求,進(jìn)而可求,然后結(jié)合余弦定理可求,代入,計(jì)算可得所求.【詳解】解:把看成關(guān)于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負(fù)的舍去),.故答案為.【點(diǎn)睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應(yīng)用,屬于中檔題.14、【解析】如圖,是切點(diǎn),是的中點(diǎn),因?yàn)椋?,又,所以,,又,根?jù)雙曲線的定義,有,即,兩邊平方并化簡(jiǎn)得,所以,因此.15、32π【解析】
設(shè)ED=a,根據(jù)勾股定理的逆定理可以通過(guò)計(jì)算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運(yùn)用基本不等式,可以求出AM的長(zhǎng)度,最后根據(jù)球的表面積公式進(jìn)行求解即可.【詳解】設(shè)ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當(dāng)平面ABD⊥平面BCD時(shí),當(dāng)四面體C﹣EMN的體積才有可能取得最大值,設(shè)AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當(dāng)且僅當(dāng)x時(shí)取等號(hào).解得a=2.此時(shí)三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學(xué)運(yùn)算能力和空間想象能力.16、1【解析】
根據(jù)條件即可得出,由即可得出,進(jìn)行數(shù)量積的運(yùn)算即可求出λ.【詳解】∵向量與的夾角為,||=||=1,且;∴;∴λ=1.故答案為:1.【點(diǎn)睛】考查向量數(shù)量積的運(yùn)算及計(jì)算公式,以及向量垂直的充要條件.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)存在,或.【解析】
(1)由得看成到兩定點(diǎn)的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線的斜率存在時(shí),設(shè)直線點(diǎn)斜式方程,由,可得,再直線與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由,,可得,即為,由,可得的軌跡是以為焦點(diǎn),且的橢圓,由,可得,可得曲線的方程為;假設(shè)存在過(guò)點(diǎn)的直線l符合題意.當(dāng)直線的斜率不存在,設(shè)方程為,可得為短軸的兩個(gè)端點(diǎn),不成立;當(dāng)直線的斜率存在時(shí),設(shè)方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點(diǎn)睛】本題考查求軌跡方程及直線與圓錐曲線位置關(guān)系問(wèn)題.(1)定義法求軌跡方程的思路:應(yīng)用定義法求軌跡方程的關(guān)鍵在于由已知條件推出關(guān)于動(dòng)點(diǎn)的等量關(guān)系式,由等量關(guān)系結(jié)合曲線定義判斷是何種曲線,再設(shè)出標(biāo)準(zhǔn)方程,用待定系數(shù)法求解;(2)解決是否存在直線的問(wèn)題時(shí),可依據(jù)條件尋找適合條件的直線方程,聯(lián)立方程消元得出一元二次方程,利用判別式得出是否有解.18、(1),;(2).【解析】
(1)先把參數(shù)方程化成普通方程,再利用極坐標(biāo)的公式把普通方程化成極坐標(biāo)方程;(2)先利用極坐標(biāo)求出弦長(zhǎng),再求高,最后求的面積.【詳解】(1)曲線的極坐標(biāo)方程為:,因?yàn)榍€的普通方程為:,曲線的極坐標(biāo)方程為;(2)由(1)得:點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,,點(diǎn)到射線的距離為的面積為.【點(diǎn)睛】本題考查普通方程、參數(shù)方程與極坐標(biāo)方程之間的互化,同時(shí)也考查了利用極坐標(biāo)方程求解面積問(wèn)題,考查計(jì)算能力,屬于中等題.19、(1)證明見(jiàn)解析;(2).【解析】
(1)構(gòu)造直線所在平面,由面面平行推證線面平行;(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過(guò)點(diǎn)交于點(diǎn),連接,如下圖所示:因?yàn)槠矫嫫矫?,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因?yàn)闉橹悬c(diǎn),,故可得//,為中點(diǎn);又因?yàn)樗倪呅螢榈妊菪?,是的中點(diǎn),故可得//;又,且平面,平面,故面面,又因?yàn)槠矫?,故?即證.(2)連接,,作交于點(diǎn),由(1)可知平面,又因?yàn)?/,故可得平面,則;又因?yàn)?/,,故可得即,,兩兩垂直,則分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,,,設(shè)面的法向量為,則,,則,可取,設(shè)平面的法向量為,則,,則,可取,可知平面與平面所成的銳二面角的余弦值為.【點(diǎn)睛】本題考查由面面平行推證線面平行,涉及用向量法求二面角的大小,屬綜合基礎(chǔ)題.20、(1),;(2)148萬(wàn)億元.【解析】
(1)由散點(diǎn)圖知更適宜,對(duì)兩邊取自然對(duì)數(shù)得,令,,,則,再利用線性回歸方程的計(jì)算公式計(jì)算即可;(2)將代入所求的回歸方程中計(jì)算即可.【詳解】(1)根據(jù)數(shù)據(jù)及圖表可以判斷,更適宜作為全國(guó)GDP總量關(guān)于的回歸方程.對(duì)兩邊取自然對(duì)數(shù)得,令,,,得.因?yàn)椋?,所以關(guān)于的線性回歸方程為,所以關(guān)于的回歸方程為.(2)將代入,其中,于是2020年的全國(guó)GDP總量約為:萬(wàn)億元.【點(diǎn)睛】本題考查非線性回歸方程的應(yīng)用,在處理非線性
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 簽訂苗木合同范例
- 空地租賃合同范例
- 農(nóng)村買房協(xié)議合同范例
- 酒吧限合同范例
- 口腔門診轉(zhuǎn)讓合同范例
- 中介傭金合同范例設(shè)備
- 社區(qū)采購(gòu)合同范例
- 全案托管設(shè)計(jì)合同范例
- 托班課程設(shè)計(jì)自我介紹
- dsp課程設(shè)計(jì)直流開(kāi)關(guān)電源
- 2024個(gè)稅內(nèi)部培訓(xùn)
- DB11-T 2324-2024腳手架鋼板立網(wǎng)防護(hù)應(yīng)用技術(shù)規(guī)程
- 建筑施工安全隱患排查與風(fēng)險(xiǎn)評(píng)估方案
- GB/T 44537-2024精細(xì)陶瓷室溫?cái)嗔秧g性試驗(yàn)方法表面裂紋彎曲梁(SCF)法
- 綠化服務(wù)承諾與質(zhì)量保證措施方案
- DB3502T 081-2022 竹蓀栽培技術(shù)規(guī)程
- DB11T 1296-2021 體育場(chǎng)館能源消耗定額
- 人工挖孔樁施工方案
- 情感糾紛合同模板
- 個(gè)人用電風(fēng)扇項(xiàng)目可行性實(shí)施報(bào)告
- 2024年安徽淮南高新區(qū)管委會(huì)招聘工作人員12人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
評(píng)論
0/150
提交評(píng)論