2023年實(shí)驗(yàn)報(bào)告時(shí)間序列_第1頁(yè)
2023年實(shí)驗(yàn)報(bào)告時(shí)間序列_第2頁(yè)
2023年實(shí)驗(yàn)報(bào)告時(shí)間序列_第3頁(yè)
2023年實(shí)驗(yàn)報(bào)告時(shí)間序列_第4頁(yè)
2023年實(shí)驗(yàn)報(bào)告時(shí)間序列_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

實(shí)驗(yàn)報(bào)告----平穩(wěn)時(shí)間序列模型的建立08經(jīng)濟(jì)記錄I60814030王思瑤實(shí)驗(yàn)?zāi)康膹挠^測(cè)到的化工生產(chǎn)過(guò)程產(chǎn)量的70個(gè)數(shù)據(jù)樣本出發(fā),通過(guò)對(duì)模型的辨認(rèn)、模型的定價(jià)、模型的參數(shù)估計(jì)等環(huán)節(jié)建立起適合序列的模型。以下是化工生產(chǎn)過(guò)程的產(chǎn)量數(shù)據(jù):obsBFobsBF1473658264374532338544713936538405466441487554255841434595944571048455011714662123547441357486414404943155850521644513817805259185553551937544120745553215156492257573423505835246059542545604526576168275062382845635029256460305965393150665932716740335668573474695435507023可以明顯看出序列均值顯著非零,所以用樣本均值作為其估計(jì)對(duì)序列進(jìn)行零均值化。obsBF零均值化后的數(shù)據(jù)YobsBF零均值化后的數(shù)據(jù)Y147-4.1285736586.8714326412.871433745-6.12857323-28.1285738542.8714347119.871433936-15.12857538-13.1285740542.8714366412.871434148-3.128577553.8714342553.87143841-10.128574345-6.128579597.8714344575.871431048-3.128574550-1.12857117119.87143466210.871431235-16.128574744-7.1285713575.87143486412.871431440-11.128574943-8.1285715586.8714350520.871431644-7.128575138-13.12857178028.8714352597.8714318553.8714353553.871431937-14.128575441-10.12857207422.8714355531.871432151-0.128575649-2.1285722575.871435734-17.128572350-1.128575835-16.1285724608.8714359542.871432545-6.128576045-6.1285726575.87143616816.871432750-1.128576238-13.128572845-6.128576350-1.128572925-26.1285764608.8714330597.871436539-12.128573150-1.1285766597.87143327119.871436740-11.1285733564.8714368575.87143347422.8714369542.871433550-1.128577023-28.12857二.實(shí)驗(yàn)環(huán)節(jié)1.模型辨認(rèn)零均值平穩(wěn)序列的自相關(guān)函數(shù)與偏相關(guān)函數(shù)的記錄特性如下:模型AR(n)MA(m)ARMA(n,m)自相關(guān)函數(shù)拖尾截尾拖尾偏自相關(guān)函數(shù)截尾拖尾拖尾所以,作零均值化后數(shù)據(jù)的自相關(guān)函數(shù)與偏自相關(guān)函數(shù)圖Date:04/25/11Time:22:35Sample:20232070Includedobservations:70AutocorrelationPartialCorrelationAC

PAC

Q-Stat

Prob

***|.|

***|.|1-0.382-0.38210.6380.001

.|**|

.|**|20.3250.20918.4440.000

**|.|

.|.|3-0.193-0.01821.2340.000

.|*.|

.|.|40.090-0.04921.8570.000

.*|.|

.*|.|5-0.162-0.12623.9000.000

.|.|

.*|.|60.014-0.09423.9160.001

.|.|

.|.|70.0120.06523.9280.001

.*|.|

.*|.|8-0.085-0.07924.5190.002

.|.|

.|.|90.039-0.05124.6440.003

.|.|

.|*.|100.0330.08024.7360.006

.|*.|

.|*.|110.0900.12525.4260.008

.*|.|

.|.|12-0.077-0.05425.9420.011

.|.|

.|.|130.063-0.04526.2910.016

.|.|

.|*.|140.0510.13426.5240.022

.|.|

.|*.|15-0.0060.07926.5280.033

.|*.|

.|*.|160.1260.14528.0160.031

.*|.|

.|.|17-0.090-0.04028.7920.036

.|.|

.*|.|180.017-0.08428.8200.051

.*|.|

.|.|19-0.099-0.01729.7950.054

.|.|

.|.|200.006-0.03629.7980.073

.|.|

.|.|210.0150.05529.8200.096

.|.|

.|.|22-0.037-0.01529.9680.119

.|.|

.|.|230.013-0.05129.9850.150

.|.|

.|.|240.0100.01029.9970.185

.|.|

.|.|250.015-0.01630.0230.223

.|.|

.|.|260.0360.02330.1720.261

.|.|

.|.|27-0.016-0.03630.2020.305

.|.|

.|.|280.0330.03030.3350.347

.|.|

.|.|29-0.057-0.01530.7350.378

.|.|

.|.|300.051-0.00331.0640.412

.*|.|

.|.|31-0.070-0.05331.7060.431

.|.|

.|.|320.057-0.00332.1410.460由上圖可知Autocorrelation與PartialCorrelation序列均有收斂到零的趨勢(shì),可以認(rèn)為Y的自相關(guān)函數(shù)與偏自相關(guān)函數(shù)均是拖尾的,所以初步判斷該序列適合ARMA模型。2.模型定階(1)根據(jù)Pandit-Wu(yù)建模方法,擬建ARMA(2,1)模型,在EViews命令欄中輸入:LSYAR(1)AR(2)MA(1),得到如下結(jié)果:DependentVariable:YMethod:LeastSquaresDate:04/27/11Time:16:11Sample(adjusted):20232070Includedobservations:68afteradjustmentsConvergenceachievedafter16iterationsBackcast:2023VariableCoefficientStd.Errort-StatisticProb.

AR(1)-0.8371280.327087-2.5593430.0128AR(2)-0.0794100.190590-0.4166520.6783MA(1)0.5313600.3171141.6756090.0986R-squared0.223430

Meandependentvar-0.128570AdjustedR-squared0.199535

S.D.dependentvar11.97136S.E.ofregression10.71062

Akaikeinfocriterion7.623463Sumsquaredresid7456.629

Schwarzcriterion7.721383Loglikelihood-256.1978

Durbin-Watsonstat(yī)1.824445InvertedARRoots

-.11

-.73InvertedMARoots

-.53令a2=resid,在Eviews命令行中輸入:genra2=resid再輸入:scata2a2(-1)?看該模型的殘差與其滯后一期之間的散點(diǎn)圖:從上圖看不出有相關(guān)趨勢(shì),并且D.W值為1.824445,說(shuō)明不存在相關(guān)性,因此可以初步認(rèn)為ARMA(2,1)模型是適應(yīng)的。(2)根據(jù)Pandit-Wu建模方法,再建ARMA(4,3)模型,在EViews命令欄中輸入:LSYAR(1)AR(2)AR(3)AR(4)MA(1)MA(2)MA(3),得到如下結(jié)果:DependentVariable:YMethod:LeastSquaresDate:04/27/11Time:16:36Sample(adjusted):20232070Includedobservations:66afteradjustmentsConvergenceachievedafter191iterationsBackcast:20232023VariableCoefficientStd.Errort-StatisticProb.

AR(1)-0.5988740.145198-4.1245440.0001AR(2)0.3121000.1230012.5373790.0138AR(3)0.8709760.1186357.3416630.0000AR(4)0.1743630.1293781.3477020.1829MA(1)0.3288360.0492186.6812140.0000MA(2)-0.2887470.056156-5.1418340.0000MA(3)-0.9400540.053871-17.450060.0000R-squared0.236761

Meandependentvar-0.007358AdjustedR-squared0.159143

S.D.dependentvar11.37949S.E.ofregression10.43479

Akaikeinfocriterion7.628172Sumsquaredresid6424.210

Schwarzcriterion7.860409Loglikelihood-244.7297

Durbin-Watsonstat1.907327InvertedARRoots

.94

-.22

-.66-.64i-.66+.64iInvertedMARoots

.97

-.65+.74i

-.65-.74i由上面結(jié)果可以看出:ARMA(4,3)模型的殘差平方和Sumsquaredresid為6424.210,ARMA(2,1)模型的殘差平方和Sumsquaredresid為7456.629,因此ARMA(4,3)擬合效果更好;并且ARMA(4,3)模型的D.W值為1.907327,大于ARMA(2,1)模型的D.W值1.824445,說(shuō)明ARMA(4,3)模型的擬合效果更好;RMA(4,3)模型AIC值為7.628172,比ARMA(2,1)模型的7.623463稍大,但并不明顯。因此模型ARMA(4,3)比模型ARMA(2,1)更好。(3)根據(jù)Pandit-Wu建模方法,再建模型ARMA(6,5),在EViews命令欄中輸入:LSYAR(1)AR(2)AR(3)AR(4)AR(5)AR(6)MA(1)MA(2)MA(3)MA(4)MA(5),得到如下結(jié)果:DependentVariable:YMethod:LeastSquaresDate:04/27/11Time:16:46Sample(adjusted):20232070Includedobservations:64afteradjustmentsConvergenceachievedafter124iterationsBackcast:OFF(RootsofMAprocesstoolarge)VariableCoefficientStd.Errort-StatisticProb.

AR(1)0.1548380.2155130.7184610.4756AR(2)0.0190600.2076730.0917810.9272AR(3)0.1427820.1214871.1752860.2451AR(4)0.2354670.1697331.3872820.1712AR(5)0.6786490.2092393.2434150.0020AR(6)0.1157840.1815760.6376610.5264MA(1)-0.6109750.318997-1.9153020.0609MA(2)0.5842470.3334971.7518800.0856MA(3)-0.1050150.308324-0.3406000.7348MA(4)-0.5608250.369143-1.5192630.1346MA(5)-1.1605710.430714-2.6945260.0094R-squared0.596802

Meandependentvar-0.003570AdjustedR-squared0.520727

S.D.dependentvar11.32423S.E.ofregression7.839709

Akaikeinfocriterion7.111439Sumsquaredresid3257.435

Schwarzcriterion7.482497Loglikelihood-216.5661

Durbin-Watsonstat2.318205InvertedARRoots

1.07

.28+.89i

.28-.89i

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論