版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)在區(qū)間有三個(gè)零點(diǎn),,,且,若,則的最小正周期為()A. B. C. D.2.德國數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開三角函數(shù)和反三角函數(shù)的6個(gè)新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計(jì)算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級數(shù)展開式”計(jì)算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.3.函數(shù)的對稱軸不可能為()A. B. C. D.4.已知函數(shù),集合,,則()A. B.C. D.5.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.76.如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學(xué)成績平均分的平均水平高于乙班B.甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學(xué)測試的總平均分是1037.已知斜率為的直線與雙曲線交于兩點(diǎn),若為線段中點(diǎn)且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B.3 C. D.8.已知定義在上的函數(shù)的周期為4,當(dāng)時(shí),,則()A. B. C. D.9.已知函數(shù)的定義域?yàn)椋瑒t函數(shù)的定義域?yàn)椋ǎ〢. B.C. D.10.不等式組表示的平面區(qū)域?yàn)?,則()A., B.,C., D.,11.給出下列三個(gè)命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象.其中假命題的個(gè)數(shù)是()A.0 B.1 C.2 D.312.集合的真子集的個(gè)數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.14.設(shè)滿足約束條件,則的取值范圍為__________.15.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.16.已知,則展開式中的系數(shù)為__三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求證:.(2)討論函數(shù)的極值;(3)是否存在實(shí)數(shù),使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.18.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當(dāng)?shù)拿娣e取得最大值時(shí),求AD的長.19.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點(diǎn)是棱的中點(diǎn),,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.20.(12分)某市調(diào)硏機(jī)構(gòu)對該市工薪階層對“樓市限購令”態(tài)度進(jìn)行調(diào)查,抽調(diào)了50名市民,他們月收入頻數(shù)分布表和對“樓市限購令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調(diào)的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數(shù)學(xué)期望.(3)從月收入頻率分布表的6組市民中分別隨機(jī)抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結(jié)果.21.(12分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點(diǎn),將射線繞極點(diǎn)逆時(shí)針方向旋轉(zhuǎn)交曲線于點(diǎn).(1)求曲線的參數(shù)方程;(2)求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
根據(jù)題意,知當(dāng)時(shí),,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個(gè)零點(diǎn),,,當(dāng)時(shí),,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應(yīng)用,考查計(jì)算能力.2.B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計(jì)算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時(shí)滿足判定條件,輸出結(jié)果,故選:B.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,得到程序框圖的計(jì)算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.3.D【解析】
由條件利用余弦函數(shù)的圖象的對稱性,得出結(jié)論.【詳解】對于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.4.C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點(diǎn)睛】本題主要考查了集合的基本運(yùn)算,難度容易.5.D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.6.D【解析】
計(jì)算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計(jì)算,錯(cuò)誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因?yàn)榧住⒁覂砂嗟娜藬?shù)不知道,所以兩班的總平均分無法計(jì)算,故D錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.7.B【解析】
設(shè),代入雙曲線方程相減可得到直線的斜率與中點(diǎn)坐標(biāo)之間的關(guān)系,從而得到的等式,求出離心率.【詳解】,設(shè),則,兩式相減得,∴,.故選:B.【點(diǎn)睛】本題考查求雙曲線的離心率,解題方法是點(diǎn)差法,即出現(xiàn)雙曲線的弦中點(diǎn)坐標(biāo)時(shí),可設(shè)弦兩端點(diǎn)坐標(biāo)代入雙曲線方程相減后得出弦所在直線斜率與中點(diǎn)坐標(biāo)之間的關(guān)系.8.A【解析】
因?yàn)榻o出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對數(shù)恒等式和對數(shù)的運(yùn)算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時(shí),,,,.故選:A.【點(diǎn)睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對數(shù)的運(yùn)算性質(zhì),屬于中檔題.9.A【解析】試題分析:由題意,得,解得,故選A.考點(diǎn):函數(shù)的定義域.10.D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項(xiàng)即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點(diǎn)時(shí),直線在軸上的截距最大,即,當(dāng)過點(diǎn)原點(diǎn)時(shí),直線在軸上的截距最小,即,故AB錯(cuò)誤;
設(shè),則的幾何意義為點(diǎn)與點(diǎn)連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯(cuò)誤,D正確;故選:D.【點(diǎn)睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標(biāo)函數(shù)幾何意義的認(rèn)識,屬于基礎(chǔ)題.11.C【解析】
結(jié)合不等式、三角函數(shù)的性質(zhì),對三個(gè)命題逐個(gè)分析并判斷其真假,即可選出答案.【詳解】對于命題①,因?yàn)?所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調(diào)性可知,,即,即可得到,即充分性成立;必要性:中,,若,結(jié)合余弦函數(shù)的單調(diào)性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個(gè)單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點(diǎn)睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調(diào)性的應(yīng)用,考查了三角函數(shù)圖象的平移變換,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.12.C【解析】
根據(jù)含有個(gè)元素的集合,有個(gè)子集,有個(gè)真子集,計(jì)算可得;【詳解】解:集合含有個(gè)元素,則集合的真子集有(個(gè)),故選:C【點(diǎn)睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個(gè)元素的集合,有個(gè)子集,有個(gè)真子集,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.14.【解析】
由題意畫出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,數(shù)形結(jié)合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉(zhuǎn)化目標(biāo)函數(shù)為,通過平移直線,數(shù)形結(jié)合可知:當(dāng)直線過點(diǎn)A時(shí),直線截距最大,z最小;當(dāng)直線過點(diǎn)C時(shí),直線截距最小,z最大.由可得,由可得,當(dāng)直線過點(diǎn)時(shí),;當(dāng)直線過點(diǎn)時(shí),,所以.故答案為:.【點(diǎn)睛】本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15.【解析】
由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式,結(jié)合范圍可求的值,利用正弦定理可求的值,進(jìn)而根據(jù)余弦定理,基本不等式可求的最大值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當(dāng)且僅當(dāng)時(shí)取等號),即最大值為4,面積的最大值為.故答案為:.【點(diǎn)睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.16.1.【解析】
由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計(jì)算公式,求出展開式中的系數(shù).【詳解】∵已知,則,
它表示4個(gè)因式的乘積.
故其中有2個(gè)因式取,一個(gè)因式取,剩下的一個(gè)因式取1,可得的項(xiàng).
故展開式中的系數(shù).
故答案為:1.【點(diǎn)睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計(jì)算公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)見解析;(3)存在,1.【解析】
(1),求出單調(diào)區(qū)間,進(jìn)而求出,即可證明結(jié)論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點(diǎn),若不恒成立,求出的解,即可求出結(jié)論;(3)令,可證恒成立,而,由(2)得,在為減函數(shù),在上單調(diào)遞減,在都存在,不滿足,當(dāng)時(shí),設(shè),且,只需求出在單調(diào)遞增時(shí)的取值范圍即可.【詳解】(1),,,當(dāng)時(shí),,當(dāng)時(shí),,∴,故.(2)由題知,,,①當(dāng)時(shí),,所以在上單調(diào)遞減,沒有極值;②當(dāng)時(shí),,得,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增.故在處取得極小值,無極大值.(3)不妨令,設(shè)在恒成立,在單調(diào)遞增,,在恒成立,所以,當(dāng)時(shí),,由(2)知,當(dāng)時(shí),在上單調(diào)遞減,恒成立;所以不等式在上恒成立,只能.當(dāng)時(shí),,由(1)知在上單調(diào)遞減,所以,不滿足題意.當(dāng)時(shí),設(shè),因?yàn)?,所以,,即,所以在上單調(diào)遞增,又,所以時(shí),恒成立,即恒成立,故存在,使得不等式在上恒成立,此時(shí)的最小值是1.【點(diǎn)睛】本題考查導(dǎo)數(shù)綜合應(yīng)用,涉及到函數(shù)的單調(diào)性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于較難題.18.(1);(2).【解析】
(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當(dāng)時(shí),的面積取得最大值,此時(shí),,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結(jié)合,得,因?yàn)?,所以,由,?(2)在中,由余弦定得,因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),的面積取得最大值,此時(shí).在中,由余弦定理得.即.【點(diǎn)睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道容易題.19.(1)見解析(2)【解析】
(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進(jìn)而證得結(jié)論.(2)過作交于,由為的中點(diǎn),結(jié)合已知有平面.則,可求得.建立坐標(biāo)系分別求得面的法向量,平面的一個(gè)法向量為,利用公式即可求得結(jié)果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點(diǎn),.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點(diǎn),,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標(biāo)軸建立如圖所示的空間直角坐標(biāo)系.,,,設(shè)平面的法向量,則,即.令,則,..平面的一個(gè)法向量為.二面角的余弦值為.【點(diǎn)睛】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關(guān)系,考查利用向量法求二面角的方法,難度一般.20.(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.【解析】
(1)由頻率和為可知,根據(jù)求得,從而計(jì)算得到頻數(shù),補(bǔ)全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計(jì)算求得每個(gè)取值對應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望的計(jì)算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來自的可能性最大.【詳解】(1)由頻率分布表得:,即.收入在的有名,,,,則頻率分布直方圖如下:(2)收入在中贊成人數(shù)為,不贊成人數(shù)為,可能取值為,則;;,的分布列為:.(3)來自的可能性更大.【點(diǎn)睛】本題考查概率與統(tǒng)計(jì)部分知識的綜合應(yīng)用,涉及到頻數(shù)、頻率的計(jì)算、頻率分布直方圖的繪制、服從于超幾何分布的隨機(jī)變量的分布列與數(shù)學(xué)期望的求解、統(tǒng)計(jì)估計(jì)等知識;考查學(xué)生的運(yùn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024標(biāo)準(zhǔn)員工固定期限勞動協(xié)議樣本版
- 2024年規(guī)范化員工職位協(xié)議樣本版
- 2025年度創(chuàng)新技術(shù)塔吊智能化改造及租賃合同3篇
- 06 野生保護(hù) -把脈2021年中考英語作文熱點(diǎn)【學(xué)科網(wǎng)名師堂】
- 2024生意合作協(xié)議合同范本:農(nóng)產(chǎn)品批發(fā)市場合作框架協(xié)議2篇
- 2025年度原煤現(xiàn)貨交易市場準(zhǔn)入與交易合同3篇
- 2024年中學(xué)生教師節(jié)演講稿范文(30篇)
- 2024設(shè)計(jì)公司保密協(xié)議書
- 動物學(xué)知到智慧樹章節(jié)測試課后答案2024年秋云南大學(xué)
- KTV裝修泥工施工合同模板
- 超短波操作流程圖
- 小學(xué)2022 年國家義務(wù)教育質(zhì)量監(jiān)測工作方案
- 化學(xué)品安全技術(shù)說明(膠水)
- 南寧市中小學(xué)學(xué)籍管理系統(tǒng)數(shù)據(jù)采集表
- 中空吹塑成型課件
- 領(lǐng)先閱讀X計(jì)劃第四級Bug Hunt 教學(xué)設(shè)計(jì)
- 《詩詞格律》word版
- 預(yù)算第二十三講
- 高中體育與健康人教版全一冊 6.2田徑—短跑 課件(共11張PPT)
- 蔬菜供貨服務(wù)保障方案
- WordA4信紙(A4橫條直接打印版)
評論
0/150
提交評論