版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.42.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或3.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.4.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.55.已知函數(shù),若函數(shù)在上有3個零點,則實數(shù)的取值范圍為()A. B. C. D.6.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.7.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是()A. B. C. D.8.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.9.木匠師傅對一個圓錐形木件進(jìn)行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.10.點為的三條中線的交點,且,,則的值為()A. B. C. D.11.已知拋物線,F(xiàn)為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.12.已知集合,,則集合的真子集的個數(shù)是()A.8 B.7 C.4 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知定義在上的函數(shù)的圖象關(guān)于點對稱,,若函數(shù)圖象與函數(shù)圖象的交點為,則_____.14.已知集合,則_______.15.如圖,在長方體中,,E,F(xiàn),G分別為的中點,點P在平面ABCD內(nèi),若直線平面EFG,則線段長度的最小值是________________.16.動點到直線的距離和他到點距離相等,直線過且交點的軌跡于兩點,則以為直徑的圓必過_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(Ⅰ)當(dāng)時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當(dāng)時,試判斷的零點個數(shù).18.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.19.(12分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.20.(12分)本小題滿分14分)已知曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),求直線被曲線截得的線段的長度21.(12分)已知集合,集合.(1)求集合;(2)若,求實數(shù)的取值范圍.22.(10分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題2.D【解析】
根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計算能力.3.D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.4.C【解析】
利用復(fù)數(shù)代數(shù)形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘法運算,是基礎(chǔ)題.5.B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時,,令,在是增函數(shù),時,有一個零點,當(dāng)時,,令當(dāng)時,,在上單調(diào)遞增,當(dāng)時,,在上單調(diào)遞減,所以當(dāng)時,取得最大值,因為在上有3個零點,所以當(dāng)時,有2個零點,如圖所示:所以實數(shù)的取值范圍為綜上可得實數(shù)的取值范圍為,故選:B【點睛】本題主要考查了函數(shù)的零點問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.6.C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當(dāng)時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.7.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)是.故選:A.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.8.D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.9.C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學(xué)生空間想象,數(shù)學(xué)運算能力,難度一般.10.B【解析】
可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.11.A【解析】
根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設(shè)點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【點睛】本題考查拋物線的方程應(yīng)用,同時也考查了焦半徑公式等.屬于中檔題.12.D【解析】
轉(zhuǎn)化條件得,利用元素個數(shù)為n的集合真子集個數(shù)為個即可得解.【詳解】由題意得,,集合的真子集的個數(shù)為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數(shù)問題,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.4038.【解析】
由函數(shù)圖象的對稱性得:函數(shù)圖象與函數(shù)圖象的交點關(guān)于點對稱,則,,即,得解.【詳解】由知:得函數(shù)的圖象關(guān)于點對稱又函數(shù)的圖象關(guān)于點對稱則函數(shù)圖象與函數(shù)圖象的交點關(guān)于點對稱則故,即本題正確結(jié)果:【點睛】本題考查利用函數(shù)圖象的對稱性來求值的問題,關(guān)鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對稱中心,屬中檔題.14.【解析】
由可得集合是奇數(shù)集,由此可以得出結(jié)果.【詳解】解:因為所以集合中的元素為奇數(shù),所以.【點睛】本題考查了集合的交集,解析出集合B中元素的性質(zhì)是本題解題的關(guān)鍵.15.【解析】
如圖,連接,證明平面平面EFG.因為直線平面EFG,所以點P在直線AC上.當(dāng)時.線段的長度最小,再求此時的得解.【詳解】如圖,連接,因為E,F(xiàn),G分別為AB,BC,的中點,所以,平面,則平面.因為,所以同理得平面,又.所以平面平面EFG.因為直線平面EFG,所以點P在直線AC上.在中,,故當(dāng)時.線段的長度最小,最小值為.故答案為:【點睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問題,意在考查學(xué)生對這些知識的理解掌握水平.16.【解析】
利用動點到直線的距離和他到點距離相等,,可知動點的軌跡是以為焦點的拋物線,從而可求曲線的方程,將,代入,利用韋達(dá)定理,可得,從而可知以為直徑的圓經(jīng)過原點O.【詳解】設(shè)點,由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點.故答案為:(0,0)【點睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達(dá)定理,考查了運算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當(dāng)時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當(dāng)時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當(dāng)時,,,∴,∴在恒成立,∴在無零點.③當(dāng)時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點問題,考查了分類討論思想,屬于壓軸題.18.(1).(2).【解析】
(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設(shè),0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,∵AD=2,AB=AF=2EF=2,P是DF的中點,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設(shè)異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設(shè)P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設(shè)平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長度|PF|.【點睛】本題考查了異面直線夾角,根據(jù)二面角求長度,意在考查學(xué)生的空間想象能力和計算能力.19.(1)證明見解析;(2).【解析】
(1)要證面面垂直需要先證明線面垂直,即證明出平面即可;(2)求出點A到平面的距離,然后根據(jù)棱錐的體積公式即可求出四棱錐的體積.【詳解】(1)連接,由是平行四邊形及N是的中點,得N也是的中點,因為點M是的中點,所以,因為,所以,又,,所以平面,又平面,所以平面平面;(2)過A作交于點O,因為平面平面,平面平面,所以平面,由是菱形及,得為三角形,則,由平面,得,從而側(cè)面為矩形,所以.【點睛】本題主要考查了面面垂直的證明,求四棱錐的體積,屬于一般題.20.【解析】解:解:將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為,即,它表示以為圓心,2為半徑圓,………4分直線方程的普通方程為,………8分圓C的圓心到直線l的距離,……………10分故直線被曲線截得的線段長度為.……………14分21.(1);(2).【解析】
(1)求出函數(shù)的定義域,即可求出結(jié)論;(2)化簡集合,根據(jù)確定集合的端點位置,建立的不等量關(guān)系,即可求解.【詳解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以實數(shù)的取值范圍為.【點睛】本題考查集合的運算,集合間的關(guān)系求參數(shù),考查函數(shù)的定義域,屬于基礎(chǔ)題.22.(1);(2);(2)見解析.【解析】
(1)由圓的方程求出點坐標(biāo),得雙曲線的,再計算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標(biāo),計算;(3)由已知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目保密合同范例
- 銷售璀璨珠寶合同范例
- 學(xué)校采購合唱臺合同范例
- 經(jīng)營供銷合同范例
- 度校檢服務(wù)合同范例
- 酒店轉(zhuǎn)讓定金合同范例
- 同城電器門面轉(zhuǎn)讓合同范例
- 五年級下數(shù)學(xué)教案-確定位置-北師大版
- 食品買賣安全合同范例
- 六年級下冊數(shù)學(xué)教案-總復(fù)習(xí) 數(shù)的運算|北師大版
- 肝癌患者的護(hù)理疑難病例討論記錄文本
- 四大經(jīng)典之溫病
- SCH系列通徑壁厚對照表
- 石化裝置動設(shè)備操作規(guī)程
- ?;◢u(海南儋州)民宿眾籌計劃書
- 注塑件通用技術(shù)條件
- 人大代表選舉主持詞_1
- KingSCADA初級教程工程安全和用戶管理
- 消防安裝工程質(zhì)量通病及防治措施
- 植物大戰(zhàn)僵尸兒童填色畫2
- 數(shù)控車床出廠檢驗表(共5頁)
評論
0/150
提交評論