版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)且的圖象是()A. B.C. D.2.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.3.已知定義在上的偶函數(shù),當(dāng)時,,設(shè),則()A. B. C. D.4.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時,.若函數(shù)至少有三個零點(diǎn),則的取值范圍是()A. B. C. D.5.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件6.已知橢圓:的左、右焦點(diǎn)分別為,,過的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.7.設(shè)i為數(shù)單位,為z的共軛復(fù)數(shù),若,則()A. B. C. D.8.已知滿足,則的取值范圍為()A. B. C. D.9.函數(shù)的圖象大致為()A. B.C. D.10.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.11.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④12.函數(shù)與的圖象上存在關(guān)于直線對稱的點(diǎn),則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系xOy中,己知直線與函數(shù)的圖象在y軸右側(cè)的公共點(diǎn)從左到右依次為,,…,若點(diǎn)的橫坐標(biāo)為1,則點(diǎn)的橫坐標(biāo)為________.14.已知數(shù)列與均為等差數(shù)列(),且,則______.15.一個四面體的頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)分別是,,,,則該四面體的外接球的體積為__________.16.已知函數(shù)的圖象在點(diǎn)處的切線方程是,則的值等于__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐中側(cè)面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點(diǎn).為線段上的點(diǎn),且.(1)證明:為線段的中點(diǎn);(2)求二面角的余弦值.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個動點(diǎn),求線段的中點(diǎn)到直線的最大距離.19.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項(xiàng)是1.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,是數(shù)列的前項(xiàng)和,求使成立的正整數(shù)的值.20.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國衛(wèi)生運(yùn)動,從人居環(huán)境改善、飲食習(xí)慣、社會心理健康、公共衛(wèi)生設(shè)施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機(jī)收集了該區(qū)居民六類日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣的概率;(3)利用上述六類習(xí)慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習(xí)慣良好者,“”表示任選一位第k類受訪者不是習(xí)慣良好者().寫出方差,,,,,的大小關(guān)系.21.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點(diǎn).證明:;設(shè),點(diǎn)M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.22.(10分)據(jù)《人民網(wǎng)》報道,美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導(dǎo)了地球變綠.據(jù)統(tǒng)計,中國新增綠化面積的來自于植樹造林,下表是中國十個地區(qū)在去年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復(fù)人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請根據(jù)上述數(shù)據(jù)分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過的概率;(3)在這十個地區(qū)中,從退化林修復(fù)面積超過一萬公頃的地區(qū)中,任選兩個地區(qū),記X為這兩個地區(qū)中退化林修復(fù)面積超過六萬公頃的地區(qū)的個數(shù),求X的分布列及數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
先判斷函數(shù)的奇偶性,再取特殊值,利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)分布情況,即可得解.【詳解】由題可知定義域?yàn)?,,是偶函?shù),關(guān)于軸對稱,排除C,D.又,,在必有零點(diǎn),排除A.故選:B.【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.2.B【解析】
列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.3.B【解析】
根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時,,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時,,則,令則,當(dāng)時,,則在時單調(diào)遞增,因?yàn)?,所以,即,則在時單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點(diǎn)睛】本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.4.B【解析】
由題意可得的周期為,當(dāng)時,,令,則的圖像和的圖像至少有個交點(diǎn),畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時,,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個零點(diǎn),則的圖像和的圖像至少有個交點(diǎn),,若,的圖像和的圖像只有1個交點(diǎn),不合題意,所以,的圖像和的圖像至少有個交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問題,屬于中檔題.5.B【解析】
試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點(diǎn):邏輯命題6.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.7.A【解析】
由復(fù)數(shù)的除法求出,然后計算.【詳解】,∴.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘除法運(yùn)算,考查共軛復(fù)數(shù)的概念,掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.8.C【解析】
設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,作出不等式組對應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過點(diǎn)的直線平行于軸時,此時成立;取所有負(fù)值都成立;當(dāng)過點(diǎn)時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點(diǎn)睛】本題考查簡單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問題,解題時作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對于直線斜率要注意斜率不存在的直線是否存在.9.A【解析】
用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【詳解】因?yàn)?所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故可以排除;因?yàn)?故排除,因?yàn)橛蓤D象知,排除.故選:A【點(diǎn)睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.10.B【解析】
設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.11.A【解析】
對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因?yàn)?,所以,所以③錯誤.對于④,因?yàn)椋?,所以④正確.故選A.12.C【解析】
由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時,;當(dāng)時,,故時,取得極大值,也即為最大值,當(dāng)趨近于時,趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
當(dāng)時,得,或,依題意可得,可求得,繼而可得答案.【詳解】因?yàn)辄c(diǎn)的橫坐標(biāo)為1,即當(dāng)時,,所以或,又直線與函數(shù)的圖象在軸右側(cè)的公共點(diǎn)從左到右依次為,,所以,故,所以函數(shù)的關(guān)系式為.當(dāng)時,(1),即點(diǎn)的橫坐標(biāo)為1,為二函數(shù)的圖象的第二個公共點(diǎn).故答案為:1.【點(diǎn)睛】本題考查三角函數(shù)關(guān)系式的恒等變換、正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力及思維能力,屬于中檔題.14.20【解析】
設(shè)等差數(shù)列的公差為,由數(shù)列為等差數(shù)列,且,根據(jù)等差中項(xiàng)的性質(zhì)可得,,解方程求出公差,代入等差數(shù)列的通項(xiàng)公式即可求解.【詳解】設(shè)等差數(shù)列的公差為,由數(shù)列為等差數(shù)列知,,因?yàn)?所以,解得,所以數(shù)列的通項(xiàng)公式為,所以.故答案為:【點(diǎn)睛】本題考查等差數(shù)列的概念及其通項(xiàng)公式和等差中項(xiàng);考查運(yùn)算求解能力;等差中項(xiàng)的運(yùn)用是求解本題的關(guān)鍵;屬于基礎(chǔ)題.15.【解析】
將四面體補(bǔ)充為長寬高分別為的長方體,體對角線即為外接球的直徑,從而得解.【詳解】采用補(bǔ)體法,由空間點(diǎn)坐標(biāo)可知,該四面體的四個頂點(diǎn)在一個長方體上,該長方體的長寬高分別為,長方體的外接球即為該四面體的外接球,外接球的直徑即為長方體的體對角線,所以球半徑為,體積為.【點(diǎn)睛】本題主要考查了四面體外接球的常用求法:補(bǔ)體法,通過補(bǔ)體得到長方體的外接球從而得解,屬于基礎(chǔ)題.16.【解析】
利用導(dǎo)數(shù)的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,要注意在某點(diǎn)的切線與過某點(diǎn)的切線的區(qū)別,本題屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
(1)設(shè)為中點(diǎn),連結(jié),先證明,可證得,假設(shè)不為線段的中點(diǎn),可得平面,這與矛盾,即得證;(2)以為原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【詳解】(1)設(shè)為中點(diǎn),連結(jié).∴,,又平面,平面,∴.又分別為中點(diǎn),,又,∴.假設(shè)不為線段的中點(diǎn),則與是平面內(nèi)內(nèi)的相交直線,從而平面,這與矛盾,所以為線段的中點(diǎn).(2)以為原點(diǎn),由條件面面,∴,以分別為軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量為所以取,則,.同法可求得平面的法向量為∴,由圖知二面角為銳二面角,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何與空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.18.(1)..(2)最大距離為.【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程的公式計算得到答案.(2)曲線的參數(shù)方程為,設(shè),計算點(diǎn)到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標(biāo)方程為,即.直線的直角坐標(biāo)方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設(shè),,則到直線的距離為,所以線段的中點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查了極坐標(biāo)方程,參數(shù)方程,距離的最值問題,意在考查學(xué)生的計算能力.19.(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差數(shù)列中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公比,可得所求通項(xiàng)公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項(xiàng)是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的錯位相減法求和,以及方程思想和運(yùn)算能力,屬于中檔題.20.(1)(2)(3)【解析】
(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“,則(E),求出即可;(3)根據(jù)題意,寫出即可.【詳解】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類中習(xí)慣良好者“的事件為,有效問卷共有(份,其中受訪者中膳食合理習(xí)慣良好的人數(shù)是人,故(A);(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,根據(jù)題意,可知(A),(B),(C),設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣方面,至少具備兩類良好習(xí)慣“則.所以該居民在“衛(wèi)生習(xí)慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習(xí)慣至少具備2個良好習(xí)慣的概率為0.766.(3).【點(diǎn)睛】本題考查了古典概型求概率,獨(dú)立性事件,互斥性事件求概率等,考查運(yùn)算能力和事件應(yīng)用能力,中檔題.21.(1)見解析;(2)【解析】
(1)由平面平面的性質(zhì)定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,由空間向量法和異
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛州職業(yè)技術(shù)學(xué)院《海洋生態(tài)與海洋生物的保護(hù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 消毒滅菌培訓(xùn)課件
- 《心肺復(fù)蘇術(shù)操作》課件
- 贛南師范大學(xué)《食品腐敗的抗?fàn)幹贰?023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)生微班會課件
- 小學(xué)生知禮儀課件
- 三年級數(shù)學(xué)上冊8探索樂園用有余數(shù)的除法解決規(guī)律問題學(xué)案冀教版
- 三年級數(shù)學(xué)上冊五四則混合運(yùn)算說課稿西師大版
- 三年級數(shù)學(xué)上冊第九單元數(shù)學(xué)廣角第1課時集合教案新人教版
- 2025年7月日歷表(含農(nóng)歷-周數(shù)-方便記事備忘)
- 2024北京大興區(qū)初三(上)期末化學(xué)試卷及答案
- 媒體與新聞法律法規(guī)法律意識與職業(yè)素養(yǎng)
- 推土機(jī)-推土機(jī)構(gòu)造與原理
- 九年級化學(xué)課程綱要
- 臥式單面多軸鉆孔組合機(jī)床動力滑臺液壓系統(tǒng)
- Pcr室危險評估報告
- 生姜高產(chǎn)種植技術(shù)課件
- 人教版六年級口算題大全(打印版)
- 鋼結(jié)構(gòu)工程實(shí)測實(shí)量
- 國開2023法律職業(yè)倫理-形考冊答案
評論
0/150
提交評論