2017-2021全國高考真題數(shù)學匯編:概率章節(jié)綜合_第1頁
2017-2021全國高考真題數(shù)學匯編:概率章節(jié)綜合_第2頁
2017-2021全國高考真題數(shù)學匯編:概率章節(jié)綜合_第3頁
2017-2021全國高考真題數(shù)學匯編:概率章節(jié)綜合_第4頁
2017-2021全國高考真題數(shù)學匯編:概率章節(jié)綜合_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

10/102017-2021全國高考真題數(shù)學匯編概率章節(jié)綜合一、單選題1.(2017·全國·高考真題(文))從分別寫有的張卡片中隨機抽取張,放回后再隨機抽取張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為A. B. C. D.2.(2017·全國·高考真題(理))如圖,正方形ABCD內(nèi)的圖形來自中國古代的太極圖,正方形內(nèi)切圓中的黑色部分和白色部分關(guān)于正方形的中心成中心對稱,在正方形內(nèi)隨機取一點,則此點取自黑色部分的概率是A. B. C. D.3.(2018·全國·高考真題(理))如圖來自古希臘數(shù)學家希波克拉底所研究的幾何圖形.此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形ABC的斜邊BC,直角邊AB,AC.△ABC的三邊所圍成的區(qū)域記為I,黑色部分記為II,其余部分記為III.在整個圖形中隨機取一點,此點取自I,II,III的概率分別記為p1,p2,p3,則A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p34.(2018·全國·高考真題(理))我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如.在不超過30的素數(shù)中,隨機選取兩個不同的數(shù),其和等于30的概率是A. B. C. D.5.(2018·全國·高考真題(文))從2名男同學和3名女同學中任選2人參加社區(qū)服務,則選中的2人都是女同學的概率為A. B. C. D.6.(2019·全國·高考真題(文))生物實驗室有5只兔子,其中只有3只測量過某項指標,若從這5只兔子中隨機取出3只,則恰有2只測量過該指標的概率為A. B.C. D.7.(2019·全國·高考真題(文))兩位男同學和兩位女同學隨機排成一列,則兩位女同學相鄰的概率是A. B. C. D.8.(2020·全國·高考真題(文))設O為正方形ABCD的中心,在O,A,B,C,D中任取3點,則取到的3點共線的概率為()A. B.C. D.9.(2021·全國·高考真題(理))將4個1和2個0隨機排成一行,則2個0不相鄰的概率為()A. B. C. D.10.(2021·全國·高考真題(文))將3個1和2個0隨機排成一行,則2個0不相鄰的概率為()A.0.3 B.0.5 C.0.6 D.0.811.(2018·全國·高考真題(文))若某群體中的成員只用現(xiàn)金支付的概率為0.45,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為0.15,則不用現(xiàn)金支付的概率為A.0.3 B.0.4 C.0.6 D.0.712.(2021·全國·高考真題(文))在區(qū)間隨機取1個數(shù),則取到的數(shù)小于的概率為()A. B. C. D.二、解答題13.(2019·全國·高考真題(理))為了治療某種疾病,研制了甲、乙兩種新藥,希望知道哪種新藥更有效,為此進行動物試驗.試驗方案如下:每一輪選取兩只白鼠對藥效進行對比試驗.對于兩只白鼠,隨機選一只施以甲藥,另一只施以乙藥.一輪的治療結(jié)果得出后,再安排下一輪試驗.當其中一種藥治愈的白鼠比另一種藥治愈的白鼠多4只時,就停止試驗,并認為治愈只數(shù)多的藥更有效.為了方便描述問題,約定:對于每輪試驗,若施以甲藥的白鼠治愈且施以乙藥的白鼠未治愈則甲藥得1分,乙藥得分;若施以乙藥的白鼠治愈且施以甲藥的白鼠未治愈則乙藥得1分,甲藥得分;若都治愈或都未治愈則兩種藥均得0分.甲、乙兩種藥的治愈率分別記為α和β,一輪試驗中甲藥的得分記為X.(1)求的分布列;(2)若甲藥、乙藥在試驗開始時都賦予4分,表示“甲藥的累計得分為時,最終認為甲藥比乙藥更有效”的概率,則,,,其中,,.假設,.(i)證明:為等比數(shù)列;(ii)求,并根據(jù)的值解釋這種試驗方案的合理性.14.(2017·全國·高考真題(文))某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.15.(2019·全國·高考真題(理))11分制乒乓球比賽,每贏一球得1分,當某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學進行單打比賽,假設甲發(fā)球時甲得分的概率為0.5,乙發(fā)球時甲得分的概率為0.4,各球的結(jié)果相互獨立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個球該局比賽結(jié)束.(1)求P(X=2);(2)求事件“X=4且甲獲勝”的概率.16.(2020·全國·高考真題(文))某廠接受了一項加工業(yè)務,加工出來的產(chǎn)品(單位:件)按標準分為A,B,C,D四個等級.加工業(yè)務約定:對于A級品、B級品、C級品,廠家每件分別收取加工費90元,50元,20元;對于D級品,廠家每件要賠償原料損失費50元.該廠有甲、乙兩個分廠可承接加工業(yè)務.甲分廠加工成本費為25元/件,乙分廠加工成本費為20元/件.廠家為決定由哪個分廠承接加工業(yè)務,在兩個分廠各試加工了100件這種產(chǎn)品,并統(tǒng)計了這些產(chǎn)品的等級,整理如下:甲分廠產(chǎn)品等級的頻數(shù)分布表等級ABCD頻數(shù)40202020乙分廠產(chǎn)品等級的頻數(shù)分布表等級ABCD頻數(shù)28173421(1)分別估計甲、乙兩分廠加工出來的一件產(chǎn)品為A級品的概率;(2)分別求甲、乙兩分廠加工出來的100件產(chǎn)品的平均利潤,以平均利潤為依據(jù),廠家應選哪個分廠承接加工業(yè)務?

參考答案1.D【詳解】從分別寫有1,2,3,4,5的5張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數(shù)n=5×5=25,抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10個基本事件,∴抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率p=故答案為D.2.B【詳解】設正方形邊長為,則圓的半徑為,正方形的面積為,圓的面積為.由圖形的對稱性可知,太極圖中黑白部分面積相等,即各占圓面積的一半.由幾何概型概率的計算公式得,此點取自黑色部分的概率是,選B.點睛:對于幾何概型的計算,首先確定事件類型為幾何概型并確定其幾何區(qū)域(長度、面積、體積或時間),其次計算基本事件區(qū)域的幾何度量和事件A區(qū)域的幾何度量,最后計算.3.A【分析】首先設出直角三角形三條邊的長度,根據(jù)其為直角三角形,從而得到三邊的關(guān)系,然后應用相應的面積公式求得各個區(qū)域的面積,根據(jù)其數(shù)值大小,確定其關(guān)系,再利用面積型幾何概型的概率公式確定出p1,p2,p3的關(guān)系,從而求得結(jié)果.【詳解】設,則有,從而可以求得的面積為,黑色部分的面積為,其余部分的面積為,所以有,根據(jù)面積型幾何概型的概率公式,可以得到,故選A.點睛:該題考查的是面積型幾何概型的有關(guān)問題,題中需要解決的是概率的大小,根據(jù)面積型幾何概型的概率公式,將比較概率的大小問題轉(zhuǎn)化為比較區(qū)域的面積的大小,利用相關(guān)圖形的面積公式求得結(jié)果.4.C【詳解】分析:先確定不超過30的素數(shù),再確定兩個不同的數(shù)的和等于30的取法,最后根據(jù)古典概型概率公式求概率.詳解:不超過30的素數(shù)有2,3,5,7,11,13,17,19,23,29,共10個,隨機選取兩個不同的數(shù),共有種方法,因為,所以隨機選取兩個不同的數(shù),其和等于30的有3種方法,故概率為,選C.點睛:古典概型中基本事件數(shù)的探求方法:(1)列舉法.(2)樹狀圖法:適合于較為復雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.5.D【詳解】分析:分別求出事件“2名男同學和3名女同學中任選2人參加社區(qū)服務”的總可能及事件“選中的2人都是女同學”的總可能,代入概率公式可求得概率.詳解:設2名男同學為,3名女同學為,從以上5名同學中任選2人總共有共10種可能,選中的2人都是女同學的情況共有共三種可能則選中的2人都是女同學的概率為,故選D.點睛:應用古典概型求某事件的步驟:第一步,判斷本試驗的結(jié)果是否為等可能事件,設出事件;第二步,分別求出基本事件的總數(shù)與所求事件中所包含的基本事件個數(shù);第三步,利用公式求出事件的概率.6.B【分析】本題首先用列舉法寫出所有基本事件,從中確定符合條件的基本事件數(shù),應用古典概率的計算公式求解.【詳解】設其中做過測試的3只兔子為,剩余的2只為,則從這5只中任取3只的所有取法有,共10種.其中恰有2只做過測試的取法有共6種,所以恰有2只做過測試的概率為,選B.【點睛】本題主要考查古典概率的求解,題目較易,注重了基礎知識、基本計算能力的考查.應用列舉法寫出所有基本事件過程中易于出現(xiàn)遺漏或重復,將兔子標注字母,利用“樹圖法”,可最大限度的避免出錯.7.D【分析】男女生人數(shù)相同可利用整體發(fā)分析出兩位女生相鄰的概率,進而得解.【詳解】兩位男同學和兩位女同學排成一列,因為男生和女生人數(shù)相等,兩位女生相鄰與不相鄰的排法種數(shù)相同,所以兩位女生相鄰與不相鄰的概率均是.故選D.【點睛】本題考查常見背景中的古典概型,滲透了數(shù)學建模和數(shù)學運算素養(yǎng).采取等同法,利用等價轉(zhuǎn)化的思想解題.8.A【分析】列出從5個點選3個點的所有情況,再列出3點共線的情況,用古典概型的概率計算公式運算即可.【詳解】如圖,從5個點中任取3個有共種不同取法,3點共線只有與共2種情況,由古典概型的概率計算公式知,取到3點共線的概率為.故選:A【點晴】本題主要考查古典概型的概率計算問題,采用列舉法,考查學生數(shù)學運算能力,是一道容易題.9.C【分析】采用插空法,4個1產(chǎn)生5個空,分2個0相鄰和2個0不相鄰進行求解.【詳解】將4個1和2個0隨機排成一行,可利用插空法,4個1產(chǎn)生5個空,若2個0相鄰,則有種排法,若2個0不相鄰,則有種排法,所以2個0不相鄰的概率為.故選:C.10.C【分析】利用古典概型的概率公式可求概率.【詳解】解:將3個1和2個0隨機排成一行,可以是:,共10種排法,其中2個0不相鄰的排列方法為:,共6種方法,故2個0不相鄰的概率為,故選:C.11.B【詳解】分析:由公式計算可得詳解:設事件A為只用現(xiàn)金支付,事件B為只用非現(xiàn)金支付,則因為所以,故選B.點睛:本題主要考查事件的基本關(guān)系和概率的計算,屬于基礎題.12.B【分析】根據(jù)幾何概型的概率公式即可求出.【詳解】設“區(qū)間隨機取1個數(shù)”,對應集合為:,區(qū)間長度為,“取到的數(shù)小于”,對應集合為:,區(qū)間長度為,所以.故選:B.【點睛】本題解題關(guān)鍵是明確事件“取到的數(shù)小于”對應的范圍,再根據(jù)幾何概型的概率公式即可準確求出.13.(1)見解析;(2)(i)見解析;(ii).【分析】(1)首先確定所有可能的取值,再來計算出每個取值對應的概率,從而可得分布列;(2)(i)求解出的取值,可得,從而整理出符合等比數(shù)列定義的形式,問題得證;(ii)列出證得的等比數(shù)列的通項公式,采用累加的方式,結(jié)合和的值可求得;再次利用累加法可求出.【詳解】(1)由題意可知所有可能的取值為:,,;;則的分布列如下:(2),,,(i)即整理可得:是以為首項,為公比的等比數(shù)列(ii)由(i)知:,,……,作和可得:表示最終認為甲藥更有效的.由計算結(jié)果可以看出,在甲藥治愈率為0.5,乙藥治愈率為0.8時,認為甲藥更有效的概率為,此時得出錯誤結(jié)論的概率非常小,說明這種實驗方案合理.【點睛】本題考查離散型隨機變量分布列的求解、利用遞推關(guān)系式證明等比數(shù)列、累加法求解數(shù)列通項公式和數(shù)列中的項的問題.本題綜合性較強,要求學生能夠熟練掌握數(shù)列通項求解、概率求解的相關(guān)知識,對學生分析和解決問題能力要求較高.14.(1).(2).【分析】(1)由前三年六月份各天的最高氣溫數(shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫數(shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當溫度大于等于25℃時,需求量為500,Y=450×2=900元,當溫度在[20,25)℃時,需求量為300,Y=300×2﹣(450﹣300)×2=300元,當溫度低于20℃時,需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當溫度大于等于20時,Y>0,由前三年六月份各天的最高氣溫數(shù)據(jù),得當溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計Y大于零的概率P.【點睛】本題考查概率的求法,考查利潤的所有可能取值的求法,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論