版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.82.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.3.已知雙曲線的焦距為,若的漸近線上存在點(diǎn),使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,則雙曲線的離心率的取值范圍是()A. B. C. D.4.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.5.在展開式中的常數(shù)項(xiàng)為A.1 B.2 C.3 D.76.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線準(zhǔn)線相離;②直線與直線的斜率乘積為;③設(shè)過點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③7.在中,內(nèi)角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列8.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.59.2020年是脫貧攻堅(jiān)決戰(zhàn)決勝之年,某市為早日實(shí)現(xiàn)目標(biāo),現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個(gè)貧困縣扶貧,要求每個(gè)貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種10.已知,則的大小關(guān)系為()A. B. C. D.11.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.12.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的二項(xiàng)展開式中,含項(xiàng)的系數(shù)為__________.14.動點(diǎn)到直線的距離和他到點(diǎn)距離相等,直線過且交點(diǎn)的軌跡于兩點(diǎn),則以為直徑的圓必過_________.15.設(shè)點(diǎn)P在函數(shù)的圖象上,點(diǎn)Q在函數(shù)的圖象上,則線段PQ長度的最小值為_________16.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動直線l交拋物線C:于點(diǎn)P,點(diǎn)F為C的焦點(diǎn).圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點(diǎn),過Q且垂直于的直線為,直線,分別與y軸相交于點(diǎn)A,當(dāng)線段AB的長度最小時(shí),求s的值.18.(12分)在四棱錐的底面是菱形,底面,,分別是的中點(diǎn),.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)的位置;若不存在,說明理由.19.(12分)已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點(diǎn),且與圓相切.(1)求的值;(2)動點(diǎn)在拋物線的準(zhǔn)線上,動點(diǎn)在上,若在點(diǎn)處的切線交軸于點(diǎn),設(shè).求證點(diǎn)在定直線上,并求該定直線的方程.20.(12分)已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))(1)求的值;(2)若,且對任意恒成立,求的最大值.21.(12分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.22.(10分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點(diǎn).求證:平面平面;是否存在滿足的點(diǎn),使得?若存在,求出的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
求出,,,,,,判斷出是一個(gè)以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個(gè)以周期為6的周期數(shù)列,則.故選:B.【點(diǎn)睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.2、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)?,所以有:是方程的二?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.3、B【解析】
由可得;由過點(diǎn)所作的圓的兩條切線互相垂直可得,又焦點(diǎn)到雙曲線漸近線的距離為,則,進(jìn)而求解.【詳解】,所以離心率,又圓是以為圓心,半徑的圓,要使得經(jīng)過點(diǎn)所作的圓的兩條切線互相垂直,必有,而焦點(diǎn)到雙曲線漸近線的距離為,所以,即,所以,所以雙曲線的離心率的取值范圍是.故選:B【點(diǎn)睛】本題考查雙曲線的離心率的范圍,考查雙曲線的性質(zhì)的應(yīng)用.4、C【解析】
直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡求解即可.【詳解】由得:本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的除法的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.5、D【解析】
求出展開項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng),問題得解?!驹斀狻空归_項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng)分別為:,,所以展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理中展開式的通項(xiàng)公式及轉(zhuǎn)化思想,考查計(jì)算能力,屬于基礎(chǔ)題。6、D【解析】
對于①,利用拋物線的定義,利用可判斷;對于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對稱性可知,,兩點(diǎn)關(guān)于軸對稱,所以過點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.7、C【解析】
由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到.8、B【解析】
還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點(diǎn)睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計(jì)算能力,屬于中檔題.9、B【解析】
分成甲單獨(dú)到縣和甲與另一人一同到縣兩種情況進(jìn)行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨(dú)到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點(diǎn)睛】本小題主要考查簡答排列組合的計(jì)算,屬于基礎(chǔ)題.10、A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎(chǔ)題..11、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點(diǎn)睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.12、A【解析】
作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號.又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號.故.故選:A【點(diǎn)睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線面角的最小性進(jìn)行判定.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
寫出二項(xiàng)展開式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理展開式、需熟記二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.14、【解析】
利用動點(diǎn)到直線的距離和他到點(diǎn)距離相等,,可知動點(diǎn)的軌跡是以為焦點(diǎn)的拋物線,從而可求曲線的方程,將,代入,利用韋達(dá)定理,可得,從而可知以為直徑的圓經(jīng)過原點(diǎn)O.【詳解】設(shè)點(diǎn),由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點(diǎn).故答案為:(0,0)【點(diǎn)睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時(shí)考查了方程的思想和韋達(dá)定理,考查了運(yùn)算能力,屬于中檔題.15、【解析】
由解析式可分析兩函數(shù)互為反函數(shù),則圖象關(guān)于對稱,則點(diǎn)到的距離的最小值的二倍即為所求,利用導(dǎo)函數(shù)即可求得最值.【詳解】由題,因?yàn)榕c互為反函數(shù),則圖象關(guān)于對稱,設(shè)點(diǎn)為,則到直線的距離為,設(shè),則,令,即,所以當(dāng)時(shí),,即單調(diào)遞減;當(dāng)時(shí),,即單調(diào)遞增,所以,則,所以的最小值為,故答案為:【點(diǎn)睛】本題考查反函數(shù)的性質(zhì)的應(yīng)用,考查利用導(dǎo)函數(shù)研究函數(shù)的最值問題.16、【解析】
利用復(fù)數(shù)的乘法運(yùn)算求出,再利用共軛復(fù)數(shù)的概念即可求解.【詳解】由,則.故答案為:【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2).【解析】
根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點(diǎn)Q處的切線的斜率存在,由對稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因?yàn)閽佄锞€C的方程為,所以F的坐標(biāo)為,設(shè),因?yàn)閳AM與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點(diǎn),則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點(diǎn)Q處的切線的斜率存在,由對稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時(shí),取得極小值也是最小值,即AB取得最小值此時(shí).【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于難題.18、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個(gè)法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點(diǎn)存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點(diǎn)F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點(diǎn)存在,設(shè),,據(jù)此可得:,即:,從而點(diǎn)F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點(diǎn)F為中點(diǎn)時(shí)滿足題意.【點(diǎn)睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.19、(1);(2)點(diǎn)在定直線上.【解析】
(1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;(2)設(shè)出,運(yùn)用導(dǎo)數(shù)求得切線的斜率,求得為切點(diǎn)的切線方程,再由向量的坐標(biāo)表示,可得在定直線上;【詳解】解:(1)依題意設(shè)直線的方程為,由已知得:圓的圓心,半徑,因?yàn)橹本€與圓相切,所以圓心到直線的距離,即,解得或(舍去).所以;(2)依題意設(shè),由(1)知拋物線方程為,所以,所以,設(shè),則以為切點(diǎn)的切線的斜率為,所以切線的方程為.令,,即交軸于點(diǎn)坐標(biāo)為,所以,,,.設(shè)點(diǎn)坐標(biāo)為,則,所以點(diǎn)在定直線上.【點(diǎn)睛】本題考查拋物線的方程和性質(zhì),直線與圓的位置關(guān)系的判斷,考查直線方程和圓方程的運(yùn)用,以及切線方程的求法,考查化簡整理的運(yùn)算能力,屬于綜合題.20、(1)a=-1,b=1;(2)-1.【解析】(1)對求導(dǎo)得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對任意恒成立,等價(jià)于對任意恒成立,構(gòu)造,求出的單調(diào)性,由,,,,可得存在唯一的零點(diǎn),使得,利用單調(diào)性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調(diào)遞增.又,,,,所以存在唯一的,使得,且當(dāng)時(shí),,時(shí),.即在單調(diào)遞減,在上單調(diào)遞增.所以.又,即,∴.∴.∵,∴.又因?yàn)閷θ我夂愠闪ⅲ?,?點(diǎn)睛:利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年學(xué)期計(jì)劃大學(xué)學(xué)期計(jì)劃大二下學(xué)期
- 輕醫(yī)美抗衰知識培訓(xùn)課件
- 2025年學(xué)生會工作計(jì)劃范文怎么寫
- 2025年甜品店創(chuàng)業(yè)計(jì)劃書
- 安全生產(chǎn)責(zé)任制的思考
- 2025年銷售個(gè)人月度工作總結(jié)與計(jì)劃范文
- 2025年度弘文青少年體育俱樂部工作計(jì)劃
- 心內(nèi)科護(hù)士的工作總結(jié)
- 安保行業(yè)安全生產(chǎn)工作總結(jié)
- 2025年社區(qū)愛國衛(wèi)生工作計(jì)劃報(bào)告
- 《中西醫(yī)的區(qū)別》課件
- RFID電子標(biāo)簽制作方法
- 智能制造企業(yè)數(shù)字化轉(zhuǎn)型建設(shè)方案
- 病理生理學(xué)課件脂代謝紊亂
- 教師幽默朗誦節(jié)目《我愛上班》
- 《細(xì)胞工程學(xué)》考試復(fù)習(xí)題庫(帶答案)
- 中學(xué)課堂教學(xué)評價(jià)量表
- 食堂食材配送以及售后服務(wù)方案
- 稱量與天平培訓(xùn)試題及答案
- 塊單項(xiàng)活動教學(xué)材料教案丹霞地貌
- 青年人應(yīng)該如何樹立正確的人生觀
評論
0/150
提交評論