陜西省西安市第七十中學(xué)2022-2023學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
陜西省西安市第七十中學(xué)2022-2023學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
陜西省西安市第七十中學(xué)2022-2023學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
陜西省西安市第七十中學(xué)2022-2023學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
陜西省西安市第七十中學(xué)2022-2023學(xué)年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若一個正多邊形的每個內(nèi)角為150°,則這個正多邊形的邊數(shù)是()A.12 B.11 C.10 D.92.古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+313.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值4.如圖,已知點(diǎn)A(0,1),B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸的正半軸于點(diǎn)C,則∠BAC等于()A.90° B.120° C.60° D.30°5.對于下列調(diào)查:①對從某國進(jìn)口的香蕉進(jìn)行檢驗(yàn)檢疫;②審查某教科書稿;③中央電視臺“雞年春晚”收視率.其中適合抽樣調(diào)查的是()A.①②B.①③C.②③D.①②③6.如圖所示的幾何體的俯視圖是()A. B. C. D.7.如圖,在圓O中,直徑AB平分弦CD于點(diǎn)E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.28.某商場試銷一種新款襯衫,一周內(nèi)售出型號記錄情況如表所示:型號(厘米)383940414243數(shù)量(件)25303650288商場經(jīng)理要了解哪種型號最暢銷,則上述數(shù)據(jù)的統(tǒng)計量中,對商場經(jīng)理來說最有意義的是()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差9.下列幾何體中,三視圖有兩個相同而另一個不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)10.若等式(-5)□5=–1成立,則□內(nèi)的運(yùn)算符號為()A.+ B.– C.× D.÷二、填空題(共7小題,每小題3分,滿分21分)11.當(dāng)時,直線與拋物線有交點(diǎn),則a的取值范圍是_______.12.如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點(diǎn)A為圓心,AD的長為半徑畫弧交AB于點(diǎn)E,連接CE,則陰影部分的面積是▲(結(jié)果保留π).13.因式分解:=___.14.如圖,正方形ABCD的邊長為2,點(diǎn)B與原點(diǎn)O重合,與反比例函數(shù)y=的圖像交于E、F兩點(diǎn),若△DEF的面積為,則k的值_______.15.已知一個菱形的邊長為5,其中一條對角線長為8,則這個菱形的面積為_____.16.化簡:=____.17.某商場將一款品牌時裝按標(biāo)價打九折出售,可獲利80%,這款商品的標(biāo)價為1000元,則進(jìn)價為________元。三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,在半徑是4的⊙O中,AB、CD是兩條直徑,M是OB的中點(diǎn),CM的延長線交⊙O于點(diǎn)E,且EM>MC,連接DE,DE=.(1)求證:△AMC∽△EMB;(2)求EM的長;(3)求sin∠EOB的值.19.(5分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點(diǎn)A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點(diǎn)為M,求AM的長;(2)半圓與直線CD相切時,切點(diǎn)為N,與線段AD的交點(diǎn)為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點(diǎn)時,設(shè)此交點(diǎn)與點(diǎn)C的距離為d,直接寫出d的取值范圍.20.(8分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點(diǎn).求反比例函數(shù)和一次函數(shù)的解析式;求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.21.(10分)今年3月12日植樹節(jié)期間,學(xué)校預(yù)購進(jìn)A、B兩種樹苗,若購進(jìn)A種樹苗3棵,B種樹苗5棵,需2100元,若購進(jìn)A種樹苗4棵,B種樹苗10棵,需3800元.(1)求購進(jìn)A、B兩種樹苗的單價;(2)若該單位準(zhǔn)備用不多于8000元的錢購進(jìn)這兩種樹苗共30棵,求A種樹苗至少需購進(jìn)多少棵?22.(10分)已知:如圖,在半徑為2的扇形中,°,點(diǎn)C在半徑OB上,AC的垂直平分線交OA于點(diǎn)D,交弧AB于點(diǎn)E,聯(lián)結(jié).(1)若C是半徑OB中點(diǎn),求的正弦值;(2)若E是弧AB的中點(diǎn),求證:;(3)聯(lián)結(jié)CE,當(dāng)△DCE是以CD為腰的等腰三角形時,求CD的長.23.(12分)如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.求證:∠C=90°;當(dāng)BC=3,sinA=時,求AF的長.24.(14分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點(diǎn)E為AB的中點(diǎn),DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據(jù)正多邊形的外角與它對應(yīng)的內(nèi)角互補(bǔ),得到這個正多邊形的每個外角=180°﹣150°=30°,再根據(jù)多邊形外角和為360度即可求出邊數(shù).【詳解】∵一個正多邊形的每個內(nèi)角為150°,∴這個正多邊形的每個外角=180°﹣150°=30°,∴這個正多邊形的邊數(shù)==1.故選:A.【點(diǎn)睛】本題考查了正多邊形的外角與它對應(yīng)的內(nèi)角互補(bǔ)的性質(zhì);也考查了多邊形外角和為360度以及正多邊形的性質(zhì).2、C【解析】

本題考查探究、歸納的數(shù)學(xué)思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項(xiàng)B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點(diǎn)睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.3、B【解析】

解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.4、C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故選C.點(diǎn)睛:本題考查了垂徑定理的應(yīng)用,關(guān)鍵是求出AC、OA的長.解題時注意:垂直弦的直徑平分這條弦,并且平分弦所對的兩條?。?、B【解析】

根據(jù)普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費(fèi)人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似解答.【詳解】①對從某國進(jìn)口的香蕉進(jìn)行檢驗(yàn)檢疫適合抽樣調(diào)查;②審查某教科書稿適合全面調(diào)查;③中央電視臺“雞年春晚”收視率適合抽樣調(diào)查.故選B.【點(diǎn)睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進(jìn)行普查、普查的意義或價值不大,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.6、D【解析】試題分析:根據(jù)俯視圖的作法即可得出結(jié)論.從上往下看該幾何體的俯視圖是D.故選D.考點(diǎn):簡單幾何體的三視圖.7、D【解析】

連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設(shè)OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設(shè)OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點(diǎn)睛】此題主要考查圓內(nèi)的綜合問題,解題的關(guān)鍵是熟知垂徑定理、圓周角定理及勾股定理.8、B【解析】分析:商場經(jīng)理要了解哪些型號最暢銷,所關(guān)心的即為眾數(shù).詳解:根據(jù)題意知:對商場經(jīng)理來說,最有意義的是各種型號的襯衫的銷售數(shù)量,即眾數(shù).故選:C.點(diǎn)睛:此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)方差等,各有局限性,因此要對統(tǒng)計量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.9、B【解析】

根據(jù)三視圖的定義即可解答.【詳解】正方體的三視圖都是正方形,故(1)不符合題意;圓柱的主視圖、左視圖都是矩形,俯視圖是圓,故(2)符合題意;圓錐的主視圖、左視圖都是三角形,俯視圖是圓形,故(3)符合題意;三棱錐主視圖是、左視圖是,俯視圖是三角形,故(4)不符合題意;故選B.【點(diǎn)睛】本題考查了簡單幾何體的三視圖,熟知三視圖的定義是解決問題的關(guān)鍵.10、D【解析】

根據(jù)有理數(shù)的除法可以解答本題.【詳解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,則□內(nèi)的運(yùn)算符號為÷,故選D.【點(diǎn)睛】考查有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)的混合運(yùn)算的計算方法.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

直線與拋物線有交點(diǎn),則可化為一元二次方程組利用根的判別式進(jìn)行計算.【詳解】解:法一:與拋物線有交點(diǎn)則有,整理得解得,對稱軸法二:由題意可知,∵拋物線的頂點(diǎn)為,而∴拋物線y的取值為,則直線y與x軸平行,∴要使直線與拋物線有交點(diǎn),∴拋物線y的取值為,即為a的取值范圍,∴故答案為:【點(diǎn)睛】考查二次函數(shù)圖象的性質(zhì)及交點(diǎn)的問題,此類問題,通常可化為一元二次方程,利用根的判別式或根與系數(shù)的關(guān)系進(jìn)行計算.12、3【解析】

過D點(diǎn)作DF⊥AB于點(diǎn)F.∵AD=1,AB=4,∠A=30°,∴DF=AD?sin30°=1,EB=AB﹣AE=1.∴陰影部分的面積=平行四邊形ABCD的面積-扇形ADE面積-三角形CBE的面積=4×故答案為:3-13、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點(diǎn)睛:本題考查的是因式分解,掌握提公因式法、平方差公式進(jìn)行因式分解是解題的關(guān)鍵.14、1【解析】

利用對稱性可設(shè)出E、F的兩點(diǎn)坐標(biāo),表示出△DEF的面積,可求出k的值.【詳解】解:設(shè)AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點(diǎn)F(,2)代入解得:k=1,故答案為1.【點(diǎn)睛】本題主要考查反比例函數(shù)與正方形和三角形面積的運(yùn)用,表示出E和F的坐標(biāo)是關(guān)鍵.15、1【解析】試題解析:如圖,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴這個菱形的面積為:AC?BD=×6×8=1.16、【解析】

先利用除法法則變形,約分后通分并利用同分母分式的減法法則計算即可.【詳解】原式,

故答案為【點(diǎn)睛】本題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則是解題的關(guān)鍵.17、500【解析】

設(shè)該品牌時裝的進(jìn)價為x元,根據(jù)題意列出方程,求出方程的解得到x的值,即可得到結(jié)果.【詳解】解:設(shè)該品牌時裝的進(jìn)價為x元,根據(jù)題意得:1000×90%-x=80%x,解得:x=500,則該品牌時裝的進(jìn)價為500元.故答案為:500.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用,找出題中的等量關(guān)系是解本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)EM=4;(3)sin∠EOB=.【解析】

(1)連接A、C,E、B點(diǎn),那么只需要求出△AMC和△EMB相似,即可求出結(jié)論,根據(jù)圓周角定理可推出它們的對應(yīng)角相等,即可得△AMC∽△EMB;

(2)根據(jù)圓周角定理,結(jié)合勾股定理,可以推出EC的長度,根據(jù)已知條件推出AM、BM的長度,然后結(jié)合(1)的結(jié)論,很容易就可求出EM的長度;

(3)過點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,通過作輔助線,解直角三角形,結(jié)合已知條件和(1)(2)所求的值,可推出Rt△EOF各邊的長度,根據(jù)銳角三角函數(shù)的定義,便可求得sin∠EOB的值.【詳解】(1)證明:連接AC、EB,如圖1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直徑,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC為正數(shù),∴EC=7,∵M(jìn)為OB的中點(diǎn),∴BM=2,AM=6,∵AM?BM=EM?CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:過點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,如圖2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.【點(diǎn)睛】本題考查了圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握圓心角、弧、弦、弦心距的關(guān)系與相似三角形的判定與性質(zhì).19、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點(diǎn)O作OG⊥AD于點(diǎn)G,則四邊形DGON為矩形,進(jìn)而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進(jìn)而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進(jìn)而可得出CN的長度,畫出點(diǎn)B′在直線CD上的圖形,在Rt△AB′D中(點(diǎn)B′在點(diǎn)D左邊),利用勾股定理可求出B′D的長度進(jìn)而可得出CB′的長度,再結(jié)合圖形即可得出:半圓弧與直線CD只有一個交點(diǎn)時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點(diǎn)O作OG⊥AD于點(diǎn)G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當(dāng)點(diǎn)B′在直線CD上時,如圖4所示,在Rt△AB′D中(點(diǎn)B′在點(diǎn)D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當(dāng)點(diǎn)B′在點(diǎn)D右邊時,半圓交直線CD于點(diǎn)D、B′.∴當(dāng)半圓弧與直線CD只有一個交點(diǎn)時,4-≤d<4或d=4+.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及切線的性質(zhì),解題的關(guān)鍵是:(2)利用相似三角形的性質(zhì)求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結(jié)合求出d的取值范圍.20、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】

(1)先把B點(diǎn)坐標(biāo)代入代入y=,求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點(diǎn)坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;(2)根據(jù)x軸上點(diǎn)的坐標(biāo)特征確定C點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式和△AOB的面積=S△AOC+S△BOC進(jìn)行計算;(3)觀察函數(shù)圖象得到當(dāng)﹣4<x<0或x>2時,一次函數(shù)圖象都在反比例函數(shù)圖象下方.【詳解】解:∵B(2,﹣4)在反比例函數(shù)y=的圖象上,∴m=2×(﹣4)=﹣8,∴反比例函數(shù)解析式為:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,則A點(diǎn)坐標(biāo)為(﹣4,2).把A(﹣4,2),B(2,﹣4)分別代入y=kx+b,得,解得,∴一次函數(shù)的解析式為y=﹣x﹣2;(2)∵y=﹣x﹣2,∴當(dāng)﹣x﹣2=0時,x=﹣2,∴點(diǎn)C的坐標(biāo)為:(﹣2,0),△AOB的面積=△AOC的面積+△COB的面積=×2×2+×2×4=6;(3)由圖象可知,當(dāng)﹣4<x<0或x>2時,一次函數(shù)的值小于反比例函數(shù)的值.【點(diǎn)睛】本題考查的是一次函數(shù)與反比例函數(shù)的交點(diǎn)問題以及待定系數(shù)法的運(yùn)用,靈活運(yùn)用待定系數(shù)法是解題的關(guān)鍵,注意數(shù)形結(jié)合思想的正確運(yùn)用.21、(1)購進(jìn)A種樹苗的單價為200元/棵,購進(jìn)B種樹苗的單價為300元/棵(2)A種樹苗至少需購進(jìn)1棵【解析】

(1)設(shè)購進(jìn)A種樹苗的單價為x元/棵,購進(jìn)B種樹苗的單價為y元/棵,根據(jù)“若購進(jìn)A種樹苗3棵,B種樹苗5棵,需210元,若購進(jìn)A種樹苗4棵,B種樹苗1棵,需3800元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

(2)設(shè)需購進(jìn)A種樹苗a棵,則購進(jìn)B種樹苗(30-a)棵,根據(jù)總價=單價×購買數(shù)量結(jié)合購買兩種樹苗的總費(fèi)用不多于8000元,即可得出關(guān)于a的一元一次不等式,解之取其中的最小值即可得出結(jié)論.【詳解】設(shè)購進(jìn)A種樹苗的單價為x元/棵,購進(jìn)B種樹苗的單價為y元/棵,根據(jù)題意得:3x+5y=21004x+10y=3800解得:x=200y=300答:購進(jìn)A種樹苗的單價為200元/棵,購進(jìn)B種樹苗的單價為300元/棵.(2)設(shè)需購進(jìn)A種樹苗a棵,則購進(jìn)B種樹苗(30﹣a)棵,根據(jù)題意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A種樹苗至少需購進(jìn)1棵.【點(diǎn)睛】本題考查了一元一次不等式的應(yīng)用以及二元一次方程組的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)數(shù)量間的關(guān)系,正確列出一元一次不等式.22、(2);(2)詳見解析;(2)當(dāng)是以CD為腰的等腰三角形時,CD的長為2或.【解析】

(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進(jìn)而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當(dāng)CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當(dāng)CD=DE時,判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進(jìn)而得出∠DEA=∠OEA,即:點(diǎn)D和點(diǎn)O重合,即可得出結(jié)論.【詳解】(2)∵C是半徑OB中點(diǎn),∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設(shè)OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點(diǎn),∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當(dāng)CD=CE時.∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設(shè)菱形的邊長為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論