版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年甘肅省隴南市普通高校對口單招數(shù)學自考測試卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(10題)1.A.B.C.D.
2.已知定義在R上的函數(shù)f(x)圖象關于直線x=l對稱,若X≥1時,f(x)=x(1-x),則f(0)=()A.OB.-2C.-6D.-12
3.下列命題是真命題的是A.B.C.D.
4.(X-2)6的展開式中X2的系數(shù)是D()A.96B.-240C.-96D.240
5.A.7B.8C.6D.5
6.A.
B.
C.
7.設m>n>1且0<a<1,則下列不等式成立的是()A.
B.
C.
D.
8.已知向量a=(l,-l),6=(2,x).若A×b=1,則x=()A.-1B.-1/2C.1/2D.1
9.在ABC中,C=45°,則(1-tanA)(1-tanB)=()A.1B.-1C.2D.-2
10.下列命題中,假命題的是()A.a=0且b=0是AB=0的充分條件
B.a=0或b=0是AB=0的充分條件
C.a=0且b=0是AB=0的必要條件
D.a=0或b=0是AB=0的必要條件
二、填空題(10題)11.按如圖所示的流程圖運算,則輸出的S=_____.
12.某機電班共有50名學生,任選一人是男生的概率為0.4,則這個班的男生共有
名。
13.己知0<a<b<1,則0.2a
0.2b。
14.集合A={1,2,3}的子集的個數(shù)是
。
15.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為
。
16.已知_____.
17.
18.算式的值是_____.
19.己知兩點A(-3,4)和B(1,1),則=
。
20.
三、計算題(5題)21.解不等式4<|1-3x|<7
22.設函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
23.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
24.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。
25.在等差數(shù)列{an}中,前n項和為Sn
,且S4
=-62,S6=-75,求等差數(shù)列{an}的通項公式an.
四、簡答題(10題)26.設等差數(shù)列的前n項數(shù)和為Sn,已知的通項公式及它的前n項和Tn.
27.在ABC中,AC丄BC,ABC=45°,D是BC上的點且ADC=60°,BD=20,求AC的長
28.已知雙曲線C的方程為,離心率,頂點到漸近線的距離為,求雙曲線C的方程
29.某商場經(jīng)銷某種商品,顧客可采用一次性付款或分期付款購買,根據(jù)以往資料統(tǒng)計,顧客采用一次性付款的概率是0.6,求3為顧客中至少有1為采用一次性付款的概率。
30.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實數(shù)x。
31.化簡
32.平行四邊形ABCD中,CBD沿對角線BD折起到平面CBD丄平面ABD,求證:AB丄DE。
33.四棱錐S-ABCD中,底面ABOD為平行四邊形,側面SBC丄底面ABCD(1)證明:SA丄BC
34.已知雙曲線C:的右焦點為,且點到C的一條漸近線的距離為.(1)求雙曲線C的標準方程;(2)設P為雙曲線C上一點,若|PF1|=,求點P到C的左焦點的距離.
35.已知函數(shù)(1)求函數(shù)f(x)的最小正周期及最值(2)令判斷函數(shù)g(x)的奇偶性,并說明理由
五、解答題(10題)36.已知函數(shù)f(x)=ax2-6lnx在點(1,f(1))處的切線方程為y=1;(1)求實數(shù)a,b的值;(2)求f(x)的最小值.
37.已知橢圓C的重心在坐標原點,兩個焦點的坐標分別為F1(4,0),F(xiàn)2(-4,0),且橢圓C上任一點到兩焦點的距離和等于10.求:(1)橢圓C的標準方程;(2)設橢圓C上一點M使得直線F1M與直線F2M垂直,求點M的坐標.
38.已知橢圓x2/a2+y2/b2=1(a>b>0)的離心率為,右焦點為(,0),斜率為1的直線L與橢圓G交于A,B兩點,以AB為底邊作等腰三角形,頂點為P(-3,2).(1)求橢圓G的方程;(2)求△PAB的面積.
39.如圖,AB是⊙O的直徑,P是⊙O所在平面外一點,PA垂直于⊙O所在的平面,且PA=AB=10,設點C為⊙O上異于A,B的任意一點.(1)求證:BC⊥平面PAC;(2)若AC=6,求三棱錐C-PAB的體積.
40.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.點M為線段AB上的一動點,過點M作直線a丄AB.令AM=x,記梯形位于直線a左側部分的面積S=f(x).(1)求函數(shù)f(x)的解析式;(2)作出函數(shù)f(x)的圖象.
41.已知函數(shù)f(x)=x3-3x2-9x+1.(1)求函數(shù)f(x)的單調區(qū)間.(2)若f(x)-2a+1≥0對Vx∈[-2,4]恒成立,求實數(shù)a的取值范圍.
42.已知等比數(shù)列{an}的公比q==2,且a2,a3+1,a4成等差數(shù)列.⑴求a1及an;(2)設bn=an+n,求數(shù)列{bn}前5項和S5.
43.設函數(shù)f(x)=2x3+3ax2+3bx+8c在x=1及x=2時取得極值.(1)求a,b的值;(2)若對于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范圍.</c
44.已知數(shù)列{an}是首項和公差相等的等差數(shù)列,其前n項和為Sn,且S10=55.(1)求an和Sn(2)設=bn=1/Sn,數(shù)列{bn}的前n項和為T=n,求Tn的取值范圍.
45.在銳角△ABC中,內角A,B,C所對的邊分別是a,b,c(1)求c的值;(2)求sinA的值.
六、單選題(0題)46.已知函數(shù)f(x)=㏒2x,在區(qū)間[1,4]上隨機取一個數(shù)x,使得f(x)的值介于-1到1之間的概率為A.1/3B.3/4C.1/2D.2/3
參考答案
1.D
2.B函數(shù)圖像的對稱性.由對稱性可得f(0)=f(2)=2(1-2)=-2
3.A
4.D
5.B
6.A
7.A同底時,當?shù)讛?shù)大于0小于1時,減函數(shù);當?shù)讛?shù)大于1時,增函數(shù),底數(shù)越大值越大。
8.D向量的線性運算.由題得A×b=1×2+(-1).x=2-x=1.所以x=1,
9.C
10.C
11.20流程圖的運算.由題意可知第一次a=5,s=1,滿足a≥4,S=1×5=5,a=a-1=4,當a=4時滿足a≥4,輸出S=20.綜上所述,答案20.
12.20男生人數(shù)為0.4×50=20人
13.>由于函數(shù)是減函數(shù),因此左邊大于右邊。
14.8
15.
,由于CC1=1,AC1=,所以角AC1C的正弦值為。
16.
17.π/2
18.11,因為,所以值為11。
19.
20.
21.
22.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
23.
24.
25.解:設首項為a1、公差為d,依題意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.(1)∵
∴又∵等差數(shù)列∴∴(2)
27.在指數(shù)△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20則,則
28.
29.
30.
∵μ//v∴(2x+1.4)=(2-x,3)得
31.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
32.
33.證明:作SO丄BC,垂足為O,連接AO∵側面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形則OA丄OB得SA丄BC
34.(1)∵雙曲線C的右焦點為F1(2,0),∴c=2又點F1到C1的一條漸近線的距離為,∴,即以解得b=
35.(1)(2)∴又∴函數(shù)是偶函數(shù)
36.
37.
38.
39.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB為⊙O的直徑,C為⊙O上異于A、B的-點,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC為直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80
40.
41.
42.(1)由題可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,an=1×2n+1=2n-1(2)bn=2n-1+n,S5=1+2+3+4+5+1+2+4+8+16=46.
43.
44.(1)設數(shù)列{an}的公差為d則a1=d,an=a1+(n-l)d=nd,由Sn=a1+a2+...+a10=55d=55,解得d=1,所以an=n,Sn=(1+n)n/2=1/2n(n+1)(2)由(1)得bn=2/n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人創(chuàng)業(yè)無息貸款支持合同(二零二五版)3篇
- 2025年度個人房屋抵押貸款合同標準范本4篇
- 2025年度勞動合同終止及離職員工離職手續(xù)辦理協(xié)議4篇
- 建筑用木材采購合同(2篇)
- 工廠交叉作業(yè)安全管理協(xié)議書(2篇)
- 2025年消防設施技術改造合作協(xié)議范本3篇
- 2024年咨詢工程師(經(jīng)濟政策)考試題庫(a卷)
- 水管檢修口施工方案
- 二零二五年度門窗行業(yè)市場調研與分析合同7篇
- 春節(jié)最幸福的描寫作文四篇
- 衡水市出租車駕駛員從業(yè)資格區(qū)域科目考試題庫(全真題庫)
- 護理安全用氧培訓課件
- 《三國演義》中人物性格探析研究性課題報告
- 注冊電氣工程師公共基礎高數(shù)輔導課件
- 土方勞務分包合同中鐵十一局
- 乳腺導管原位癌
- 冷庫管道應急預案
- 司法考試必背大全(涵蓋所有法律考點)
- 公共部分裝修工程 施工組織設計
- 《學習教育重要論述》考試復習題庫(共250余題)
- 裝飾裝修施工及擔保合同
評論
0/150
提交評論