版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1/1
彈性力學第3章
4MaterialBehavior—LinearElasticSolidsTheprevioustwochaptersestablishelasticity?eldequationsrelatedtothekinematicsof
smalldeformationtheoryandtheequilibriumoftheassociatedinternalstress?eld.Based
onthesephysicalconcepts,threestrain-displacementrelations(2.2.5),sixcompatibility
equations(2.6.2),andthreeequilibriumequations(3.6.5)weredevelopedforthegeneral
three-dimensionalcase.Becausemomentequilibriumsimplyresultsinsymmetryofthestress
tensor,itisnotnormallyincludedasaseparate?eldequationset.Also,recallthatthe
compatibilityequationsactuallyrepresentonlythreeindependentrelations,andtheseequa-
tionsareneededonlytoensurethatagivenstrain?eldwillproducesingle-valuedcontinuous
displacements.Becausethedisplacementsareincludedinthegeneralproblemformulation,the
solutionautomaticallygivescontinuousdisplacements,andthecompatibilityequationsarenot
formallyneededforthegeneralsystem.Thus,excludingthecompatibilityrelations,itisfound
thatwehavenowdevelopednine?eldequations.Theunknownsintheseequationsinclude3
displacementcomponents,6componentsofstrain,and6stresscomponents,yieldingatotalof
15unknowns.Thus,the9equationsarenotsuf?cienttosolveforthe15unknowns,and
additional?eldequationsareneeded.Thisresultshouldnotbesurprisingsinceuptothispoint
inourdevelopmentwehavenotconsideredthematerialresponse.Wenowwishtocomplete
ourgeneralformulationbyspecializingtoaparticularmaterialmodelthatprovidesreasonable
characterizationofmaterialsundersmalldeformations.Themodelwewilluseisthatofa
linearelasticmaterial,anamethatcategorizestheentiretheory.Thischapterpresentsthe
basicsoftheelasticmodelspecializingtheformulationforisotropicmaterials.Relatedtheory
foranisotropicmediaisdevelopedinChapter11.Thermoelasticrelationsarealsobrie?y
presentedforlateruseinChapter12.
4.1MaterialCharacterization
Relationsthatcharacterizethephysicalpropertiesofmaterialsarecalledconstitutiveequa-
tions.Becauseoftheendlessvarietyofmaterialsandloadings,thestudyanddevelopmentof
constitutiveequationsisperhapsoneofthemostinterestingandchallenging?eldsinmechan-
ics.Althoughcontinuummechanicstheoryhasestablishedsomeprinciplesforsystematic
developmentofconstitutiveequations(Malvern1969),manyconstitutivelawshavebeen
developedthroughempiricalrelationsbasedonexperimentalevidence.Ourinteresthereis
69
limitedtoaspecialclassofsolidmaterialswithloadingsresultingfrommechanicalorthermal
effects.Themechanicalbehaviorofsolidsisnormallyde?nedbyconstitutivestress-strain
http://./doc/4b8f853243323968011c9279.htmlmonly,theserelationsexpressthestressasafunctionofthestrain,strainrate,
strainhistory,temperature,andmaterialproperties.Wechoosearathersimplematerialmodel
calledtheelasticsolidthatdoesnotincluderateorhistoryeffects.Themodelmaybe
describedasadeformablecontinuumthatrecoversitsoriginalcon?gurationwhentheloadings
causingthedeformationareremoved.Furthermore,werestricttheconstitutivestress-strain
lawtobelinear,thusleadingtoalinearelasticsolid.Althoughtheseassumptionsgreatly
simplifythemodel,linearelasticitypredictionshaveshowngoodagreementwithexperimental
dataandhaveprovidedusefulmethodstoconductstressanalysis.Manystructuralmaterials
includingmetals,plastics,ceramics,wood,rock,concrete,andsoforthexhibitlinearelastic
behaviorundersmalldeformations.
Asmentioned,experimentaltestingiscommonlyemployedinordertocharacterizethemechanicalbehaviorofrealmaterials.Onesuchtechniqueisthesimpletensiontestinwhicha
speciallypreparedcylindricalor?atstocksampleisloadedaxiallyinatestingmachine.Strain
isdeterminedbythechangeinlengthbetweenprescribedreferencemarksonthesampleandis
usuallymeasuredbyaclipgage.Loaddatacollectedfromaloadcellisdividedbythecross-
sectionalareainthetestsectiontocalculatethestress.Axialstress-straindataisrecordedand
plottedusingstandardexperimentaltechniques.Typicalqualitativedataforthreetypesof
structuralmetals(mildsteel,aluminum,castiron)areshowninFigure4-1.Itisobservedthat
eachmaterialexhibitsaninitialstress-strainresponseforsmalldeformationthatisapproxi-
matelylinear.Thisisfollowedbyachangetononlinearbehaviorthatcanleadtolarge
deformation,?nallyendingwithsamplefailure.
Foreachmaterialtheinitiallinearresponseendsatapointnormallyreferredtoastheproportionallimit.Anotherobservationinthisinitialregionisthatiftheloadingisremoved,
thesamplereturnstoitsoriginalshapeandthestraindisappears.Thischaracteristicisthe
primarydescriptorofelasticbehavior.However,atsomepointonthestress-straincurve
unloadingdoesnotbringthesamplebacktozerostrainandsomepermanentplasticdeform-
ationresults.Thepointatwhichthisnonelasticbehaviorbeginsiscalledtheelasticlimit.
Althoughsomematerialsexhibitdifferentelasticandproportionallimits,manytimes
thesevaluesaretakentobeapproximatelythesame.Anotherdemarcationonthestress-strain
curveisreferredtoastheyieldpoint,de?nedbythelocationwherelargeplasticdeformation
begins.
s
70FOUNDATIONSANDELEMENTARYAPPLICATIONS
Becausemildsteelandaluminumareductilematerials,theirstress-strainresponseindicatesextensiveplasticdeformation,andduringthisperiodthesampledimensionswillbechanging.Inparticularthesample’scross-sectionalareaundergoessigni?cantreduction,andthestresscalculationusingdivisionbytheoriginalareawillnowbeinerror.Thisaccountsforthereductioninthestressatlargestrain.Ifweweretocalculatetheloaddividedbythetruearea,thetruestresswouldcontinuetoincreaseuntilfailure.Ontheotherhand,castironisknowntobeabrittlematerial,andthusitsstress-strainresponsedoesnotshowlargeplasticdeformation.Forthismaterial,verylittlenonelasticornonlinearbehaviorisobserved.Itisthereforeconcludedfromthisandmanyotherstudiesthatalargevarietyofrealmaterialsexhibitslinearelasticbehaviorundersmalldeformations.Thiswouldleadtoalinearconstitutivemodelfortheone-dimensionalaxialloadingcasegivenbytherelations?Ee,whereEistheslopeoftheuniaxialstress-straincurve.Wenowusethissimpleconcepttodevelopthegeneralthree-dimensionalformsofthelinearelasticconstitutivemodel.
4.2LinearElasticMaterials—Hooke’sLaw
Basedonobservationsfromtheprevioussection,inordertoconstructageneralthree-dimensionalconstitutivelawforlinearelasticmaterials,weassumethateachstresscomponentislinearlyrelatedtoeachstraincomponent
sx?C11extC12eytC13ezt2C14exyt2C15eyzt2C16ezx
sy?C21extC22eytC23ezt2C24exyt2C25eyzt2C26ezx
sz?C31extC32eytC33ezt2C34exyt2C35eyzt2C36ezx
txy?C41extC42eytC43ezt2C44exyt2C45eyzt2C46ezx
tyz?C51extC52eytC53ezt2C54exyt2C55eyzt2C56ezx
tzx?C61extC62eytC63ezt2C64exyt2C65eyzt2C66ezx(4:2:1)
wherethecoef?cientsCijarematerialparametersandthefactorsof2arisebecauseofthesymmetryofthestrain.Notethatthisrelationcouldalsobeexpressedbywritingthestrainsasalinearfunctionofthestresscomponents.Theserelationscanbecastintoamatrixformatas
sxsysztxytyztzx2666666437777775?C11C12áááC16C21áááááááááááááááááá
áááááC61ááááC662666666437777775exeyez2exy2eyz2ezx2666666437777775(4:2:2)
Relations(4.2.1)canalsobeexpressedinstandardtensornotationbywriting
sij?Cijklekl(4:2:3)
whereCijklisafourth-orderelasticitytensorwhosecomponentsincludeallthematerialparametersnecessarytocharacterizethematerial.Basedonthesymmetryofthestressandstraintensors,theelasticitytensormusthavethefollowingproperties(seeExercise4-1):
MaterialBehavior—LinearElasticSolids71
Cijkl?Cjikl
(4:2:4)
Cijkl?Cijlk
Ingeneral,thefourth-ordertensorCijklhas81components.However,relations(4.2.4)
reducethenumberofindependentcomponentsto36,andthisprovidestherequiredmatch
withform(4.2.1)or(4.2.2).LaterinChapter6weintroducetheconceptofstrainenergy,and
thisleadstoafurtherreductionto21independentelasticcomponents.ThecomponentsofCijkl
orequivalentlyCijarecalledelasticmoduliandhaveunitsofstress(force/area).Inorderto
continuefurther,wemustaddresstheissuesofmaterialhomogeneityandisotropy.
Ifthematerialishomogenous,theelasticbehaviordoesnotvaryspatially,andthusallelasticmoduliareconstant.Forthiscase,theelasticityformulationisstraightforward,leadingtothe
developmentofmanyanalyticalsolutionstoproblemsofengineeringinterest.Ahomogenous
assumptionisanappropriatemodelformoststructuralapplications,andthusweprimarily
choosethisparticularcaseforsubsequentformulationandproblemsolution.However,thereare
acoupleofimportantnonhomogeneousapplicationsthatwarrantfurtherdiscussion.
Studiesingeomechanicshavefoundthatthematerialbehaviorofsoilandrockcommonlydependsondistancebelowtheearth’ssurface.Inordertosimulateparticulargeomechanics
problems,researchershaveusednonhomogeneouselasticmodelsappliedtosemi-in?nite
domains.Typicalapplicationshaveinvolvedmodelingtheresponseofasemi-in?nitesoil
massundersurfaceorsubsurfaceloadingswithvariationinelasticmoduliwithdepth(seethe
reviewbyPoulosandDavis1974).Anothermorerecentapplicationinvolvesthebehaviorof
functionallygradedmaterials(FGM)(seeErdogan1995andParameswaranandShukla1999,
2002).FGMsareanewclassofengineeredmaterialsdevelopedwithspatiallyvarying
propertiestosuitparticularapplications.Thegradedcompositionofsuchmaterialsiscom-
monlyestablishedandcontrolledusingpowdermetallurgy,chemicalvapordeposition,or
centrifugalcasting.Typicalanalyticalstudiesofthesematerialshaveassumedlinear,exponen-
tial,andpower-lawvariationinelasticmodulioftheform
Cij(x)?Coij(1tax)
Cij(x)?Coijeax
(4:2:5)
Cij(x)?Coijxa
whereCoijandaareprescribedconstantsandxisthespatialcoordinate.Furtherinvestigationof
formulationresultsforsuchspatiallyvaryingmoduliareincludedinExercises5-6and7-12in
subsequentchapters.
Similartohomogeneity,anotherfundamentalmaterialpropertyisisotropy.Thispropertyhastodowithdifferencesinmaterialmoduliwithrespecttoorientation.Forexample,many
materialsincludingcrystallineminerals,wood,and?ber-reinforcedcompositeshavedifferent
elasticmoduliindifferentdirections.Materialssuchasthesearesaidtobeanisotropic.Note
thatformostrealanisotropicmaterialsthereexistparticulardirectionswherethepropertiesare
thesame.Thesedirectionsindicatematerialsymmetries.However,formanyengineering
materials(moststructuralmetalsandmanyplastics),theorientationofcrystallineandgrain
microstructureisdistributedrandomlysothatmacroscopicelasticpropertiesarefoundtobe
essentiallythesameinalldirections.Suchmaterialswithcompletesymmetryarecalled
isotropic.Asexpected,ananisotropicmodelcomplicatestheformulationandsolutionof
problems.WethereforepostponedevelopmentofsuchsolutionsuntilChapter11andcontinue
ourcurrentdevelopmentundertheassumptionofisotropicmaterialbehavior.
72FOUNDATIONSANDELEMENTARYAPPLICATIONS
Thetensorialform(4.2.3)providesaconvenientwaytoestablishthedesiredisotropicstress-strainrelations.Ifweassumeisotropicbehavior,theelasticitytensormustbethesameunderallrotationsofthecoordinatehttp://./doc/4b8f853243323968011c9279.htmlingthebasictransformationpropertiesfromrelation(1:5:1)5,thefourth-orderelasticitytensormustsatisfy
Cijkl?QimQjnQkpQlqCmnpq
Itcanbeshown(ChandrasekharaiahandDebnath1994)thatthemostgeneralformthatsatis?esthisisotropyconditionisgivenby
Cijkl?adijdkltbdikdjltgdildjk(4:2:6)
wherea,b,andgarearbitraryconstants.Veri?cationoftheisotropypropertyofform(4.2.6)isleftashttp://./doc/4b8f853243323968011c9279.htmlingthegeneralform(4.2.6)instress-strainrelation(4.2.3)gives
sij?lekkdijt2meij(4:2:7)
wherewehaverelabeledparticularconstantsusinglandm.TheelasticconstantliscalledLame′’sconstant,andmisreferredtoastheshearmodulusormodulusofrigidity.SometextsusethenotationGfortheshearmodulus.Equation(4.2.7)canbewrittenoutinindividualscalarequationsas
sx?l(exteytez)t2mex
sy?l(exteytez)t2mey
sz?l(exteytez)t2mez
txy?2mexy
tyz?2meyz
tzx?2mezx
(4:2:8)
Relations(4.2.7)or(4.2.8)arecalledthegeneralizedHooke’slawforlinearisotropicelasticsolids.TheyarenamedafterRobertHookewhoin1678?rstproposedthatthedeformationofanelasticstructureisproportionaltotheappliedforce.Noticethesigni?cantsimplicityoftheisotropicformwhencomparedtothegeneralstress-strainlaworiginallygivenby(4.2.1).Itshouldbenotedthatonlytwoindependentelasticconstantsareneededtodescribethebehaviorofisotropicmaterials.AsshowninChapter11,additionalnumbersofelasticmoduliareneededinthecorrespondingrelationsforanisotropicmaterials.
Stress-strainrelations(4.2.7)or(4.2.8)maybeinvertedtoexpressthestrainintermsofthestress.Inordertodothisitisconvenienttousetheindexnotationform(4.2.7)andsetthetwofreeindicesthesame(contractionprocess)toget
skk?(3lt2m)ekk(4:2:9)Thisrelationcanbesolvedforekkandsubstitutedbackinto(4.2.7)toget
eij?
1
2m
sijà
l
3lt2m
skkdij
MaterialBehavior—LinearElasticSolids73
whichismorecommonlywrittenas
eij?1tn
E
sijà
n
E
skkdij(4:2:10)
whereE?m(3lt2m)=(ltm)andiscalledthemodulusofelasticityorYoung’smodulus,andn?l=[2(ltm)]isreferredtoasPoisson’sratio.Theindexnotationrelation(4.2.10)maybewrittenoutincomponent(scalar)formgivingthesixequations
ex?1
E
sxàn(sytsz)??
ey?1
E
syàn(sztsx)??
ez?1
E
szàn(sxtsy)??
exy?1tn
E
txy?
1
2m
txy
eyz?1tn
tyz?
1
tyz
ezx?1tn
E
tzx?
1
2m
tzx
(4:2:11)
Constitutiveform(4.2.10)or(4.2.11)againillustratesthatonlytwoelasticconstantsare
neededtoformulateHooke’slawforisotropicmaterials.Byusinganyoftheisotropicforms
ofHooke’slaw,itcanbeshownthattheprincipalaxesofstresscoincidewiththeprincipal
axesofstrain(seeExercise4-4).Thisresultalsoholdsforsomebutnotallanisotropic
materials.
4.3PhysicalMeaningofElasticModuli
Fortheisotropiccase,thepreviouslyde?nedelasticmodulihavesimplephysicalmeaning.
Thesecanbedeterminedthroughinvestigationofparticularstatesofstresscommonlyusedin
laboratorymaterialstestingasshowninFigure4-2.
4.3.1SimpleTension
Considerthesimpletensiontestasdiscussedpreviouslywithasamplesubjectedtotension
inthexdirection(seeFigure4-2).Thestateofstressiscloselyrepresentedbytheone-
dimensional?eld
sij?
s000000002
4
3
5
Usingthisinrelations(4.2.10)givesacorrespondingstrain?eld74FOUNDATIONSANDELEMENTARYAPPLICATIONS
eij?s
E000ànEs000ànE
s2666437775Therefore,E?s=exandissimplytheslopeofthestress-straincurve,whilen?àey=ex?àez=existheratioofthetransversestraintotheaxialstrain.Standardmeasure-mentsystemscaneasilycollectaxialstressandtransverseandaxialstraindata,andthusthroughthisonetypeoftestbothelasticconstantscanbedeterminedformaterialsofinterest.
4.3.2PureShear
Ifathin-walledcylinderissubjectedtotorsionalloading(asshowninFigure4-2),thestateofstressonthesurfaceofthecylindricalsampleisgivenby
sij?0t0t0
0000
2435Again,byusingHooke’slaw,thecorrespondingstrain?eldbecomes
eij?0t=2m0
t=2m
00000
2
435andthustheshearmodulusisgivenbym?t=2exy?t=gxy,andthismodulusissimplytheslopeoftheshearstress-shearstrain
curve.(SimpleTension)(PureShear)(HydrostaticCompression)
FIGURE4-2Specialcharacterizationstatesofstress.
MaterialBehavior—LinearElasticSolids75
4.3.3HydrostaticCompression(orTension)
The?nalexampleisassociatedwiththeuniformcompression(ortension)loadingofacubicalspecimen,asshowninFigure4-2.Thistypeoftestwouldberealizableifthesamplewasplacedinahigh-pressurecompressionchamber.Thestateofstressforthiscaseisgivenby
sij?
àp00
0àp0
00àp
2
4
3
5?àpdij
ThisisanisotropicstateofstressandthestrainsfollowfromHooke’slaw
eij?
à
1à2n
E
p00
0à
1à2n
E
p0
00à
1à2n
E
p2
66
66
4
3
77
77
5
Thedilatationthatrepresentsthechangeinmaterialvolume(seeExercise2-11)isthusgiven
byW?ekk?à3(1à2n)p=E,whichcanbewrittenas
p?àkW(4:3:1)wherek?E=[3(1à2n)]iscalledthebulkmodulusofelasticity.Thisadditionalelastic
constantrepresentstheratioofpressuretothedilatation,whichcouldbereferredtoasthe
volumetricstiffnessofthematerial.NoticethatasPoisson’sratioapproaches0.5,thebulk
modulusbecomesunboundedandthematerialdoesnotundergoanyvolumetricdeformation
andhenceisincompressible.
Ourdiscussionofelasticmoduliforisotropicmaterialshasledtothede?nitionof?veconstantsl,m,E,n,andk.However,keepinmindthatonlytwooftheseareneededto
characterizethematerial.Althoughwehavedevelopedafewrelationshipsbetweenvarious
moduli,manyothersuchrelationscanalsobefound.Infact,itcanbeshownthatall?veelastic
constantsareinterrelated,andifanytwoaregiven,theremainingthreecanbedeterminedby
usingsimpleformulae.ResultsoftheserelationsareconvenientlysummarizedinTable4-1.
Thistableshouldbemarkedforfuturereference,becauseitwillprovetobeusefulfor
calculationsthroughoutthetext.
TypicalnominalvaluesofelasticconstantsforparticularengineeringmaterialsaregiveninTable4-2.Thesemodulirepresentaveragevalues,andsomevariationwilloccurforspeci?c
materials.Furtherinformationandrestrictionsonelasticmodulirequirestrainenergycon-
cepts,whicharedevelopedinChapter6.
Beforeconcludingthissection,wewishtodiscusstheformsofHooke’slawincurvilinearcoordinates.Previouschaptershavementionedthatcylindricalandsphericalcoordinates(see
Figures1-4and1-5)areusedinmanyapplicationsforproblemsolution.Figures3-9and3-10
de?nedthestresscomponentsineachcurvilinearsystem.Inregardstothese?gures,itfollows
thattheorthogonalcurvilinearcoordinatedirectionscanbeobtainedfromabaseCartesian
systemthroughasimplerotationofthecoordinateframe.Forisotropicmaterials,theelasticity
tensorCijklisthesameinallcoordinateframes,andthusthestructureofHooke’slawremains
thesameinanyorthogonalcurvilinearsystem.Therefore,form(4.2.8)canbeexpressedin
cylindricalandsphericalcoordinatesas
76FOUNDATIONSANDELEMENTARYAPPLICATIONS
sr?l(erteytez)t2mer
sR?l(eRteftey)t2meRsy?l(erteytez)t2mey
sf?l(eRteftey)t2mefsz?l(erteytez)t2mez
sy?l(eRteftey)t2meytry?2mery
tRf?2meRftyz?2meyz
tfy?2mefytzr?2mezrtyR?2meyR(4:3:2)
Thecompletesetofelasticity?eldequationsineachofthesecoordinatesystemsisgiveninAppendixA.
4.4ThermoelasticConstitutiveRelations
Itiswellknownthatatemperaturechangeinanunrestrainedelasticsolidproducesdeform-ation.Thus,ageneralstrain?eldresultsfrombothmechanicalandthermaleffects.Withinthecontextoflinearsmalldeformationtheory,thetotalstraincanbedecomposedintothesumofmechanicalandthermalcomponentsas
TABLE4-1RelationsAmongElasticConstants
En
kmlE,nEn
EEEnE,kE3kàE
6kk3kE9kàE3k(3kàE)9kàEE,mEEà2m
mEmm(Eà2m)E,lE2l
EtltR
Et3ltR6Eà3ltR4ln,k3k(1à2n)nk3k(1à2n)2(1tn)3kn1tnn,m2m(1tn)n
2m(1tn)m2mnn,ll(1tn)(1à2n)nn
l(1tn)3nl(1à2n)2nlk,m9km3kà2m
kmkà2mk,l9k(kàl)3kàll
3kàlk32(kàl)lm,l
m(3lt2m)ltml
2(ltm)3lt2m3mlR?????????????????????????????????E2t9l2t2ElpMaterialBehavior—LinearElasticSolids77
eij?e(M)ijte(T)ij(4:4:1)
IfToistakenasthereferencetemperatureandTasanarbitrarytemperature,thethermalstrainsinanunrestrainedsolidcanbewritteninthelinearconstitutiveform
e(T)ij?aij(TàTo)(4:4:2)
whereaijisthecoef?cientofthermalexpansiontensor.Noticethatitisthetemperaturedifferencethatcreatesthermalstrain.Ifthematerialistakenasisotropic,thenaijmustbeanisotropicsecond-ordertensor,and(4.4.2)simpli?esto
e(T)ij?a(TàTo)dij(4:4:3)
whereaisamaterialconstantcalledthecoef?cientofthermalexpansion.Table4-2providestypicalvaluesofthisconstantforsomecommonmaterials.Noticethatforisotropicmaterials,noshearstrainsarecreatedbytemperaturechange.Byusing(4.4.1),thisresultcanbecombinedwiththemechanicalrelation(4.2.10)togive
eij?1tnsijànskkdijta(TàTo)dij(4:4:4)
Thecorrespondingresultsforthestressintermsofstraincanbewrittenas
sij?Cijkleklàbij(TàTo)(4:4:5)
wherebijisasecond-ordertensorcontainingthermoelasticmoduli.ThisresultissometimesreferredtoastheDuhamel-Neumannthermoelasticconstitutivelaw.Theisotropiccasecanbefoundbysimplyinvertingrelation(4.4.4)toget
sij?lekkdijt2meijà(3lt2m)a(TàTo)dij(4:4:6)
ThermoelasticsolutionsaredevelopedinChapter12,andthecurrentstudywillnowcontinueundertheassumptionofisothermalconditions.
Havingdevelopedthenecessarysixconstitutiverelations,theelasticity?eldequationsystemisnowcompletewith15equations(strain-displacement,equilibrium,Hooke’slaw)for15unknowns(displacements,strains,stresses).Obviously,furthersimpli?cationisneces-
TABLE4-2TypicalValuesofElasticModuliforCommonEngineeringMaterials
E(GPa)n
m(GPa)l(GPa)k(GPa)a(10à6=8C)Aluminum68.90.34
25.754.671.825.5Concrete27.60.20
11.57.715.311Copper89.60.34
33.47193.318Glass68.90.25
27.627.645.98.8Nylon28.30.40
10.14.0447.2102Rubber0.00190.499
0:654?10à30.3260.326200Steel207
0.2980.211116413.578FOUNDATIONSANDELEMENTARYAPPLICATIONS
saryinordertosolvespeci?cproblemsofengineeringinterest,andtheseprocessesarethe
subjectofthenextchapter.
References
ChandrasekharaiahDS,andDebnathL:ContinuumMechanics,AcademicPress,Boston,1994.
ErdoganF:Fracturemechanicsoffunctionallygradedmaterials,CompositesEngng,vol5,pp.753-770,
1995.
MalvernLE:IntroductiontotheMechanicsofaContinuousMedium,PrenticeHall,EnglewoodCliffs,
NJ,1969.
ParameswaranV,andShuklaA:Crack-tipstress?eldsfordynamicfractureinfunctionallygradient
materials,Mech.ofMaterials,vol31,pp.579-596,1999.
ParameswaranV,andShuklaA:Asymptoticstress?eldsforstationarycracksalongthegradientin
functionallygradedmaterials,J.Appl.Mech.,vol69,pp.240-243,2002.
PoulosHG,andDavisEH:ElasticSolutionsforSoilandRockMechanics,JohnWiley,NewYork,1974.Exercises
4-1.Explicitlyjustifythesymmetryrelations(4.2.4).Notethatthe?rstrelationfollowsdirectlyfromthesymmetryofthestress,whilethesecondconditionrequiresasimple
(CijkltCijlk)elktoarriveattherequiredconclusion.
expansionintotheformsij?1
2
4-2.Substitutingthegeneralisotropicfourth-orderform(4.2.6)into(4.2.3),explicitlydevelopthestress-strainrelation(4.2.7).
4-3.Followingthestepsoutlinedinthetext,inverttheformofHooke’slawgivenby(4.2.7)anddevelopform(4.2.10).ExplicitlyshowthatE?m(3lt2m)=(ltm)andn?l=[2(ltm)].
http://./doc/4b8f853243323968011c9279.htmlingtheresultsofExercise4-3,showthatm?E=[2(1tn)]andl?En=[(1tn)(1à2n)].
4-5.Forisotropicmaterialsshowthattheprincipalaxesofstraincoincidewiththeprincipalaxeso
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境風險管理在建筑設計中的體現(xiàn)
- 物流配送網(wǎng)絡優(yōu)化策略在電子商務中的應用
- 校園內(nèi)科學教育課程的深度探索
- 校園金融知識普及新生的理財觀念培養(yǎng)
- 游戲化營銷電子游戲在商業(yè)推廣中的應用
- 員工滿意度方案
- 構建多元科普模式促進科學素質(zhì)提高研究
- 2024-2025學年高中生物 第6章 生態(tài)環(huán)境的保護 第1節(jié) 人口增長對生態(tài)環(huán)境的影響說課稿 新人教版必修3
- 2023八年級數(shù)學上冊 第15章 軸對稱圖形與等腰三角形15.1 軸對稱圖形第1課時 軸對稱圖形說課稿 (新版)滬科版
- Unit5 Colours(說課稿)-2024-2025學年人教新起點版英語一年級上冊
- 蘇州2025年江蘇蘇州太倉市高新區(qū)(科教新城婁東街道陸渡街道)招聘司法協(xié)理員(編外用工)10人筆試歷年參考題庫附帶答案詳解
- 搞笑小品劇本《大城小事》臺詞完整版
- 物業(yè)服務和后勤運輸保障服務總體服務方案
- 2025年極兔速遞有限公司招聘筆試參考題庫含答案解析
- 2025年北京市文化和旅游局系統(tǒng)事業(yè)單位招聘101人筆試高頻重點提升(共500題)附帶答案詳解
- 中學學校2024-2025學年第二學期教學工作計劃
- 人大代表小組活動計劃人大代表活動方案
- 2023年護理人員分層培訓、考核計劃表
- 《銷售培訓實例》課件
- 2025年四川省新高考八省適應性聯(lián)考模擬演練(二)地理試卷(含答案詳解)
- 【經(jīng)典文獻】《矛盾論》全文
評論
0/150
提交評論