關(guān)系tri-training:利用無標(biāo)記數(shù)據(jù)學(xué)習(xí)一階規(guī)則_第1頁
關(guān)系tri-training:利用無標(biāo)記數(shù)據(jù)學(xué)習(xí)一階規(guī)則_第2頁
關(guān)系tri-training:利用無標(biāo)記數(shù)據(jù)學(xué)習(xí)一階規(guī)則_第3頁
關(guān)系tri-training:利用無標(biāo)記數(shù)據(jù)學(xué)習(xí)一階規(guī)則_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

關(guān)系tri-training:利用無標(biāo)記數(shù)據(jù)學(xué)習(xí)一階規(guī)則Tri-Training:UsingUnlabeledDatatoLearnFirst-OrderRules

Abstract:Knowledgeengineeringhasemergedasasignificantbranchofartificialintelligence,howevermanualknowledgeengineeringislaborintensiveandtimeconsuming.Toreducetheeffortexpendedbyexperts,tri-trainingisintroducedtoautomaticallylearnfirst-orderrulesfromunlabeleddata.Tri-trainingemploysthreeclassifiersinaniterativeprocessthatusesunlabeleddataandself-trainingtogeneratelabelsthatarethenusedtocorrectmislabeledinstances.Ourpaperpresentsastudyoftri-trainingbycomparingitwithotherexistingtechniques.Experimentsusingtworealworlddatasetsshowthattri-trainingperformswellandconsistentlyyieldshigherpredictionaccuracythansingle-sourcelearning,baggingandboostingmodels.

Keywords:knowledgeengineering,artificialintelligence,tri-training,first-orderrules,unlabeleddata,self-training

Introduction:KnowledgeengineeringisanimportantbranchofArtificialIntelligence(AI)thatdealswithdevelopingandmanagingknowledge-basedsystems.Itistypicallyalaboriousandtimeconsumingtask.Traditionalknowledgeengineeringgenerallyrequiresmanualacquisitionofknowledgefromexpertswhichiscostlyandinefficient.Toreducethecostandtimeassociatedwithmanualknowledgeengineering,researchersareexploringwaystoautomaticallylearnfromunlabeleddata.

Oneofthemethodsproposedrecentlyistri-training.Tri-trainingisasemi-supervisedapproachthatusesunlabeleddatatolearnfirst-orderrules.Itutilizestheuncertainlabelingofthreebaseclassifiersandtheirconsensustolabeladditionalunlabeledinstances.Ititerativelybuildsthreeclassifiersonlabeledandpartiallylabeleddata.Italsoemploysself-trainingtoimprovetheaccuracyoftheclassifiers.

...(restofthepaperomitted)Tri-traininghasbeenusedinmanyapplicationssuchastextcategorization,NamedEntityRecognition(NER),andpredictinguserpreferences.Intextcategorization,tri-trainingcanbeusedtoclassifyshorttextsordocumentsintomultiplecategories.Itachievesahigherpredictionaccuracythansingle-sourcelearningandbaggingmodels.Tri-traininghasalsobeenappliedinNERtaskforautomaticallyidentifyingentitiesfromtext.Itimprovesthelabelingprocessbyprovidinglabelsfornoisydatawhichisknowntoreducethelabelingcostsignificantly.Anotherapplicationoftri-trainingistopredictusers'preferencesbylearningfromuserbehaviors.Thismethodhasbeenusedtobuildrecommendersystemsthatcanaccuratelypredictuser'spreferencesbasedonthehistoryoftheiractivities.

Overall,tri-trainingisapromisingapproachforsemi-supervisedlearningwithunlabeleddata.Experimentsusingtworealworlddatasetshaveshownthattri-trainingperformswellandconsistentlyyieldshigherpredictionaccuracythansingle-sourcelearning,baggingandboostingmodels.However,furtherresearchisneededtoimprovethescalabilityandrobustnessofthealgorithm.Thisincludesdevelopingalgorithmstoselectinformativelabelsandfeaturelearningtechniquestogeneraterepresentativefeatures.Inadditiontotheresearchmentionedabove,thereisaneedforfurtherexplorationontheuseofmoreadvancedmachinelearningtechniquesfortri-training.Forexample,deeplearningtechniquessuchasconvolutionalneuralnetworksandrecurrentneuralnetworkscanbeusedtoimprovetheaccuracyofthemodels.Anotherpromisingareaofresearchisthedevelopmentoftransferlearningalgorithmswhichallowknowledgeacquiredfromonedomaintobeappliedtoanotherdomain.Thiscanreducetheamountofdatarequiredforeffectivelearningandcanimprovetheaccuracyofthemodelsignificantly.

Additionally,currenttri-trainingalgorithmsrelyonafixedsetofinputfeatures.Tofurtherimprovetheaccuracyofthemodel,featureselectionalgorithmscanbeusedtoselectthemostinformativefeatures.Thiswillreducethenumberofirrelevantfeaturesandcanimprovetheaccuracyofthemodel.Finally,animportantareaofresearchisthedevelopmentofalgorithmsthatcanautomaticallydeterminethebestcombinationoflabelsandfeatureswhichwouldenableamoreefficientknowledgeacquisitionprocess.

Inconclusion,tri-trainingisapowerfulsemi-supervisedapproachthatcanbeusedtolearnfromunlabeleddata.Withfurtherresearchandimprovements,ithasthepotentialtoreducethecostandtimeassociatedwithknowledgeengineering.Tri-trainingisaneffectivesemi-supervisedlearningapproachwhichutilizesunlabeleddatatogeneratefirst-orderrules.Ithasbeenusedforavarietyoftaskssuchastextcategorization,NamedEntityRecognition(NER),anduserpreferenceprediction.Experimentshavedemonstratedthattri-trainingcansignificantlyoutperformsingle-sourcelearning,baggingandboostingmodels.

Furtherresearchisneededtoimprovethescalabilityandrobustnessofthealgorithm.Somepotentialareasofexplorationincludetheuseofdeeplearningtechniques,transferlearningalgorithmsandfeatureselectionalgorithms.Additionally,algorithmstoautomaticallydeterminethebestcombinationoflabelsandfeaturescouldfurtherimprovetheaccuracy

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論