二階行列式與逆矩陣課件_第1頁
二階行列式與逆矩陣課件_第2頁
二階行列式與逆矩陣課件_第3頁
二階行列式與逆矩陣課件_第4頁
二階行列式與逆矩陣課件_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

二階行列式

與逆矩陣復習:1.對于一個二階矩陣A,如果存在一個二階矩陣B,使得AB=BA=,則稱矩陣A可逆。

2.設A是二階矩陣,如果A是可逆的,則A的逆矩陣是唯一的.3.若二階矩陣A,B均存在逆矩陣,則AB也存在逆矩陣,且(AB)-1=B-1A-1建構(gòu)數(shù)學例1設A=,問A是否可逆?如果可逆,求其逆矩陣。

例2設A=,問A是否可逆?如果可逆,求其逆矩陣。

即滿足怎樣條件有解?驗證MN=NM=I當ad-bc≠0時有解當ad-bc=0時方程組無解,矩陣M不存在逆矩陣

如果矩陣A=是可逆的,則。

表達式稱為二階行列式,記作,即=。也稱為行列式的展開式。符號記為:detA或|A|定理:二階矩陣A=可逆,當且僅當。

當矩陣A=可逆時,=。。

2.判斷下列二階矩陣是否可逆,若可逆,求出逆矩陣。①A=②B=知識應用練習1解所以矩陣M存在逆矩陣M-1,且驗證練習2求下列矩陣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論