版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第3頁共15頁初中幾何證明題經(jīng)典題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.(初二)AAFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)點,∠PAD=∠PDA=150.APCDAPCDBD2C2B2A2D1C1B1CBDAA13、如圖,已知四邊形ABCD、A1B1C1D2C2B2A2D1C1B1CBDAA1求證:四邊形A2B2C2D2ANANFECDMB求證:∠DEN=∠F.經(jīng)典題(二)1、已知:△ABC中,H為垂心(各邊高線的交點),O為外心,且OM⊥BC于M.·A·ADHEMCBO(2)若∠BAC=600,求證:AH=AO.(初二)·GAO·GAODBECQPNM求證:AP=AQ.(初二)3、如果上題把直線MN由圓外平移至圓內(nèi),則由此可得以下命題:·O·OQPBDECNM·A求證:AP=AQ.(初二)4、如圖,分別以△ABC的AC和BC為一邊,在△ABC的外側(cè)作正方形ACDE和正方形CBFG,點P是EF的中點.PCPCGFBQADE經(jīng)典題(四)AAPCB1、已知:△ABC是正三角形,P是三角形內(nèi)一點,PA=3,PB=4,PC=5.求:∠APB的度數(shù).(初二)2、設(shè)P是平行四邊形ABCD內(nèi)部的一點,且∠PBA=∠PDA.求證:∠PAB=∠PCB.(初二)PPADCB3、設(shè)ABCD為圓內(nèi)接凸四邊形,求證:AB·CD+AD·BC=AC·BD.(初三)CCBDA4、平行四邊形ABCD中,設(shè)E、F分別是BC、AB上的一點,AE與CF相交于P,且AE=CF.求證:∠DPA=∠DPC.(初二)FFPDECBAAPCAPCB設(shè)P是邊長為1的正△ABC內(nèi)任一點,L=PA+PB+PC,求證:≤L<2.ACBPD2、已知:P是邊長為1的正方形ABCD內(nèi)的一點,求PA+ACBPDACBPD3、P為正方形ABCD內(nèi)的一點,并且PA=a,PB=2a,ACBPDEDCBA4、如圖,△ABC中,∠ABC=∠ACB=800,D、E分別是AB、AC上的點,∠DCA=300,∠EBA=200EDCBA經(jīng)典題(一)1.如下圖做GH⊥AB,連接EO。由于GOFE四點共圓,所以∠GFH=∠OEG,即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得證。2.如下圖做△DGC使與△ADP全等,可得△PDG為等邊△,從而可得△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150所以∠DCP=300,從而得出△PBC是正三角形3.如下圖連接BC1和AB1分別找其中點F,E.連接C2F與A2連接EB2并延長交C2Q于H點,連接FB2并延長交A2Q于G點,由A2E=A1B1=B1C1=FB2,EB2=AB=BC=FC1,又∠GFQ+∠Q=900和∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A從而可得∠A2B2C2=900同理可得其他邊垂直且相等,從而得出四邊形A2B2C2D24.如下圖連接AC并取其中點Q,連接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,從而得出∠DEN=∠F。經(jīng)典題(二)1.(1)延長AD到F連BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,從而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)連接OB,OC,既得∠BOC=1200,從而可得∠BOM=600,所以可得OB=2OM=AH=AO,得證。3.作OF⊥CD,OG⊥BE,連接OP,OA,OF,AF,OG,AG,OQ。由于,由此可得△ADF≌△ABG,從而可得∠AFC=∠AGE。又因為PFOA與QGOA四點共圓,可得∠AFC=∠AOP和∠AGE=∠AOQ,∠AOP=∠AOQ,從而可得AP=AQ。4.過E,C,F點分別作AB所在直線的高EG,CI,F(xiàn)H。可得PQ=。由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。從而可得PQ==,從而得證。經(jīng)典題(三)1.順時針旋轉(zhuǎn)△ADE,到△ABG,連接CG.由于∠ABG=∠ADE=900+450=1350從而可得B,G,D在一條直線上,可得△AGB≌△CGB。推出AE=AG=AC=GC,可得△AGC為等邊三角形。∠AGB=300,既得∠EAC=300,從而可得∠AEC=750。又∠EFC=∠DFA=450+300=750.可證:CE=CF。2.連接BD作CH⊥DE,可得四邊形CGDH是正方形。由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,從而可知道∠F=150,從而得出AE=AF。3.作FG⊥CD,F(xiàn)E⊥BE,可以得出GFEC為正方形。令A(yù)B=Y,BP=X,CE=Z,可得PC=Y-X。tan∠BAP=tan∠EPF==,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X),既得X=Z,得出△ABP≌△PEF,得到PA=PF,得證。經(jīng)典難題(四)順時針旋轉(zhuǎn)△ABP600,連接PQ,則△PBQ是正三角形??傻谩鱌QC是直角三角形。所以∠APB=1500。2.作過P點平行于AD的直線,并選一點E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP共圓(一邊所對兩角相等)。可得∠BAP=∠BEP=∠BCP,得證。3.在BD取一點E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:=,即AD?BC=BE?AC,①又∠ACB=∠DCE,可得△ABC∽△DEC,既得=,即AB?CD=DE?AC,②由①+②可得:AB?CD+AD?BC=AC(BE+DE)=AC·BD,得證。4.過D作AQ⊥AE,AG⊥CF,由==,可得:=,由AE=FC。可得DQ=DG,可得∠DPA=∠DPC(角平分線逆定理)。經(jīng)典題(五)1.(1)順時針旋轉(zhuǎn)△BPC600,可得△PBE為等邊三角形。既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一條直線上,即如下圖:可得最小L=;(2)過P點作BC的平行線交AB,AC與點D,F(xiàn)。由于∠APD>∠ATP=∠ADP,推出AD>AP①又BP+DP>BP②和PF+FC>PC③又DF=AF④由①②③④可得:最大L<2;由(1)和(2)既得:≤L<2。2.順時針旋轉(zhuǎn)△BPC600,可得△PBE為等邊三角形。既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一條直線上,即如下圖:可得最小PA+PB+PC=AF。既得AF======。3.順時針旋轉(zhuǎn)△ABP900,可得如下圖:既得正方形邊長L==。4.在AB上找一點F,使∠BCF=600,連接EF,DG,既得△BGC為等邊三角形,可得∠DCF=100,∠FCE=200,推出△ABE≌△ACF,得到BE=CF,F(xiàn)G=GE。推出:△FGE為等邊三角形,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年校園食堂承包及食品安全追溯系統(tǒng)建設(shè)合同4篇
- 二零二四年度員工宿舍消防安全管理與培訓(xùn)合同3篇
- 二零二四事業(yè)單位聘用合同中的員工績效考核與獎勵辦法3篇
- 廣告合同糾紛訴訟狀范文
- 2025合同模板茶樓租賃合同范本
- 2025正規(guī)版抵押借款合同模板
- 2025大型建設(shè)工程施工合同
- 2025房屋出租合同簡版范本
- 2025善意取得合同效力的立法解析與邏輯證成
- 2025室內(nèi)環(huán)境檢測合同
- 撂荒地整改協(xié)議書范本
- 國際貿(mào)易地理 全套課件
- GB/T 20878-2024不銹鋼牌號及化學(xué)成分
- 診所負(fù)責(zé)人免責(zé)合同范本
- 2024患者十大安全目標(biāo)
- 印度與阿拉伯的數(shù)學(xué)
- 會陰切開傷口裂開的護(hù)理查房
- 實驗報告·測定雞蛋殼中碳酸鈣的質(zhì)量分?jǐn)?shù)
- 部編版小學(xué)語文五年級下冊集體備課教材分析主講
- 電氣設(shè)備建筑安裝施工圖集
- 《工程結(jié)構(gòu)抗震設(shè)計》課件 第10章-地下建筑抗震設(shè)計
評論
0/150
提交評論