小學(xué)奧數(shù)專題-任意四邊形、梯形與相似模型(二).教師版_第1頁
小學(xué)奧數(shù)專題-任意四邊形、梯形與相似模型(二).教師版_第2頁
小學(xué)奧數(shù)專題-任意四邊形、梯形與相似模型(二).教師版_第3頁
小學(xué)奧數(shù)專題-任意四邊形、梯形與相似模型(二).教師版_第4頁
小學(xué)奧數(shù)專題-任意四邊形、梯形與相似模型(二).教師版_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

任四、形似型板塊二

例題精梯形模型的應(yīng)用梯中例系(“梯形蝶理):AS

SO

S

B①

S:b

C②S:::b:ab:;③的應(yīng)數(shù)梯蝴定給們供解梯面與、底間系相轉(zhuǎn)的道通構(gòu)模,直接應(yīng)結(jié),往在目有半倍效.(具體推過我們以將第講要的似型行明【1如圖2求形面.S

S

S

S

【考點】梯形模型【難度】星【型】解答【解析】設(shè)S為

份,為b

份,根梯形蝴蝶定理

以;因為S以;那么S,,所梯形面積S或者根據(jù)梯形蝴蝶定理【答案】9【固如下圖形的平行CD,對角BD交于,已知△與BOC的積別平厘與平方米那么梯形ABCD的面積平厘.A

BO

【考點】梯形模型【難度】星【型】填空【解析】根據(jù)梯形蝴蝶定理,Sab35,可得:5:7,再根據(jù)梯形蝴蝶定理

:S

:

:

49,所S

(平厘米).么梯形的面積為4--任意四邊形、梯形與相似模型題庫

page1of

49144(平方厘米).【答案】144【固如圖所在形ABCD∥對線相交點。已=3,梯ABCD的面為求三形的面。D

B【考點】梯形模型【難度】星【型】解答【關(guān)鍵詞】華杯決賽15分第題1題【解析】根據(jù)意=5,CD=3,CD:AB=3:5,則根據(jù)蝴蝶模型S::::ab::25:15,令S份AOB1125則梯形ABCD共有9+15+25+15=64份1份4÷64=則三角形的積為。16【答案】

【2梯形ABCD的對線AC與BD交于,已梯上為2且角形的面積于角BOC面的AD

,求三角AOD與角BOC的積比B【考點】梯形模型【難度】星【型】解答【解析】根據(jù)形蝴蝶定理SSab:b

:3,以求出ab再根據(jù)梯形蝴蝶定理,S:b:3:通過利用已有幾何模型們輕松解決了這個問題沒有像以前一樣為某個條件的缺乏而千辛萬苦進(jìn)行構(gòu)造假設(shè),請同學(xué)們一定要牢記幾何模型結(jié)論.【答案】49【3】如下,邊ABCD中,對角線和BD交O已知AO并且的是少B

三角形A的面積,么三角形C的面積5A

O

C【考點】梯形模型【難度】星【型】解答【關(guān)鍵詞】華杯賽【解析】根據(jù)蝶定理,

三角形A的面積AOAO3所以又所以CO.三角形CBD的面積CO34--任意四邊形、梯形與相似模型題庫

page2of

222222【答案】【4梯形下是底倍,三角形OBC的面是9BC【考點】梯形模型【難度】星【型】解答

問角的積多?【解析】根據(jù)形蝴蝶定理:b,S所以S

:b4:9【答案】4【固如梯中AOB、的面分為1和,求梯的面.AC【考點】梯形模型【難度】星【型】解答【解析】根據(jù)形蝴蝶定理:a::,所以a:b2:3,:ab::3:,1.8S【答案】7.5

2.77.5【5在梯ABCD中,上底長5厘,下底長10厘米平厘米,梯ABCD的面積平厘?!究键c】梯形模型【難度】星【型】解答【關(guān)鍵詞】華杯決賽第題10分ADAODOADAODO1【解析】因為ADBC故又故BOBC102COBO2在與中因其高相等且BODO故S:S=2:1BOCDOC而20故cm。理,在COD與中BOC因AO=2:1,且在應(yīng)邊上的高相,故:即AOD

cm.在與B中因:=1:2,且其在相應(yīng)邊的高相故

:

BOC

。即

AOB

綜,

梯形

2【答案】454--任意四邊形、梯形與相似模型題庫

page3of

【6如下一長形一直分了干小已三形的面是三角BCH的積23求邊的積A

F

B

A

F

BG

H

G

HD

DE

【考點】梯形模型【難度】星【型】解答【解析】如圖連EF,顯然四邊形ADEF和邊形都是梯于我們可以得到三角形的面積等于三角形ADG的積;三角形BCH的面積等于三角形的面所以四邊形的積是23.【答案】34【固如長形若角1的面積三形面比比5四邊形的面積36則三角1的面為________.123123【考點】梯形模型【難度】星【型】填空【關(guān)鍵詞】人大附中,入學(xué)測試題【解析】做輔線如下:利用梯模這樣發(fā)現(xiàn)四邊形2分成左右兩邊其面積正好等于三角形1和角形3,以面積就是36

的面積就是3620.4【答案】20【7】如圖正形ABCD面為3平方米M是邊上的點求中影分面.BCA

D【考點】梯形模型【難度】星【型】解答【解析】因為M是邊的中點所以AM:根據(jù)梯形蝴蝶定理可以知道S:::S2以正形積方厘米.

:2:,設(shè)S份,則2份4份,所S:S3,所正方【答案】1【固下的方ABCD中E是BC邊的點與BD相交于F點三形BEF的面為平方米那正形面積平方米4--任意四邊形、梯形與相似模型題庫

page4of

ADFB

E

C【考點】梯形模型【難度】星【型】填空【解析】連接DE,根題意可知:AD,根蝴蝶定理得厘米,那么S(平厘米)【答案】12

(平厘米)

平【8如圖積平方米正方ABCD中E,F是邊的等分求影分面.AD

EF

C【考點】梯形模型【難度】星【型】解答【解析】因為EF是上的三等分點所EF:設(shè)

份根梯形蝴蝶定理可以知道份S份,3)份,因此正方形的面積為eq\o\ac(△,S)eq\o\ac(△,)△份所以::24以方厘米.陰影正方【答案】3【9如圖在長形中AB厘米厘米,求陰部的面.

F

A

F

C【考點】梯形模型【難度】星【型】解答【解析】方法一:如圖連接DEDE將陰影部分的面積分為兩個分中三角AED的面積為方厘米.由于:DC1:3,根據(jù)梯形蝴蝶定理,S:S3:1所S而平方厘米所以方厘米陰影部分的面積為3.5平厘米.方法二:如連接DEFC由EF:1:3設(shè)份根梯形蝴蝶定理份S

eq\o\ac(△,)

eq\o\ac(△,)

份因

424份S【答案】3.5

份而S

平厘所以S

平方厘米【10已是行邊:,三角ODE的面為平方米則影分面是平厘.4--任意四邊形、梯形與相似模型題庫

page5of

2A2

A

OBCE

BE【考點】梯形模型【難度】星【型】填空【關(guān)鍵詞】學(xué)而思杯,六年級【解析】連接.由于ABCD是行四邊形,:2,所以CE:AD2:3根據(jù)梯形蝴蝶定理,:S:S:S2:223:6:所S(平厘米),S(平厘米),又平方厘米陰部分面積為6(平方厘米.【答案】21【固右圖中是形是平四形已知角面如所(單平厘),陰部的積平方米

D

D

E

C

C【考點】梯形模型【難度】星【型】填空【解析】連接AE.由于AD與BC是行的,以AECD也是梯形那么S

.根據(jù)蝴蝶定,,S所以平方厘).【答案】6

【固右圖中是形是平四形已知角面如所(單平厘),陰部的積平方米A

A

O

BE

C

E

C【考點】梯形模型【難度】星【型】填空【關(guān)鍵詞】三帆中學(xué)【解析】連接AE.由于AD與BC是平行的,所以AECD也梯形那么

.根據(jù)蝴蝶定,,S,以S(平方厘米).1另解:在平行四邊形中S16(方厘米),所以S4(平方厘米根據(jù)蝴蝶定陰影部分的面積為(方厘米).【答案】44--任意四邊形、梯形與相似模型題庫

page6of

【固是平四形ABCD的CD邊的點、相于F,已知三形AFD的面是三角的積求邊的面為多?A

B

D

C【考點】梯形模型【難度】星【型】解答【關(guān)鍵詞】希望,年級,復(fù)賽第題【解析】如圖在平行線中的蝴蝶中蝴蝶翅膀相等都為6,頂上的三角形為6×6÷4=9,?處的三角形面積為9+6-6-4=5從所求四邊形面積為5=6=11.

【答案】11【11如所,、將方分4塊,的面是5平厘CED面是10平厘.:邊的面是少方米AF

5E

5EB

C

B【考點】梯形模型【難度】星【型】解答【解析】連接BF根據(jù)梯形模可知三角形BEF的積和三角形的面積相等即其面積也是平方厘米,再根據(jù)蝴蝶定理三角形的面積為10(平方厘米以長方形的面積為(平厘)四邊形的積為60(方厘米).【答案】25【固如圖所BD、將長形分成塊面是平厘,CED的面是6平厘米問四形ABEF面是少平厘?AF

AF

4E

6

4E

6B

B【考點】梯形模型【難度】星【型】解答【解析】(法連接BF根據(jù)面積比例模型或梯形蝴蝶定理可知三角形BEF的積和三角形面積相等即其面積也是6平方厘,根據(jù)蝴蝶定理三角形的面積為6(平方厘米)所以長方形的面積為

(平方厘米.四邊形ABEF的積為30(平方厘米).(由題意可知

EF42EF2,根相似三角形性質(zhì),所以三角形BCE的積為:63EBEC

(平方厘米).則三角形CBD面積為平厘,長形面積為1(方厘米.四邊形的積為30(平方厘米).【答案】114--任意四邊形、梯形與相似模型題庫

page7of

【固如圖長方被CEDF分成塊已知中塊的面分為、、8平方厘,那余的四形的面為___________平厘.A

F

B

F

B2

25

?

5

?8

8

CC【考點】梯形模型【難度】星【型】填空【關(guān)鍵詞】迎春高年級

初賽4題【解析】連接DE四邊形EDCF梯所以S又根據(jù)蝴蝶定理,S,所以S所以(平方厘米4(平方厘米.那么長方形ABCD的積為平方厘米,四邊形的積為(方厘米.【答案】9【固正方形的長,是BC的中(圖。邊OECD的面為。

D

【考點】梯形模型【難度】星【型填【關(guān)鍵詞】走美,年級,決賽第4題分SS211【解析】連結(jié)DE,,即S,S322。

DO

【答案】15【固如圖,長方ABCD中,是角角且積OD的長16,OB長那四形OECD的面積.ADAOOB

E

C

B

EC【考點】梯形模型【難度】星【型】填空【關(guān)鍵詞】迎春初賽4--任意四邊形、梯形與相似模型題庫

page8of

5【解析】解法:連接DE依題意5

BOAO所以AO2則

1DO.又因為S54所以,33得BOEO30,所以

8

.解法二S:OD:OB:9,以而S理,以S5430,

54,根據(jù)蝴蝶定所以S

5.8【答案】

【12如所方ABCD內(nèi)的影分面之為.

70,AB=8,AD=15四形EFGO的積

O

D

G

F

C【考點】梯形模型【難度】星【型】填空【關(guān)鍵詞】走美六年級初,題【解析】根據(jù)斥關(guān)系:四邊形的面積=三形AFC+三角形DBF-色部分的面積三角形AFC+角形DBF=長方形面積的一半即白色部分的面積等于長方形面積減去陰影部分的面,120-70=50所以四邊形的面【答案】10【固如圖5所,矩形ABCD的積24方米、三形ADM與三形的面積和平方厘,四形的面是平厘。D

P

CM

NOA【考點】梯形模型【難度】星【型填【關(guān)鍵詞】華杯初賽第【解析】【答案】1.8【13如等直三形DEFG是正形線與CD相交于K.知方DEFG的面,AK1:3,則BKD的積多?4--任意四邊形、梯形與相似模型題庫

page9of

AG

AGK

BE

B【考點】梯形模型【難度】星【型】解答【解析】由于DEFG是方,所DA與平那四邊形ADBC是形.在梯形中BDK和ACK的面積是相等的:KB1:3,所以面積是ABC面的,那么BDK的4面積也是ABC積的.由于是腰直角三角形,如過A作BC的垂線,M為足那M是BC的中點,而AMDE,可和ACM的積都等于正方形DEFG面的一半所以的積與正方形DEFG的積相等,為.那么的積為

.【答案】12【14如所,ABCD梯,面積是1.8的面是9,BCF的面是那陰面積多?A

DEFBC【考點】梯形模型【難度】星【型】解答【解析】根據(jù)梯形蝴蝶定理可得到,而S等積變換),所以可得,27并且S1.81.2而:AF:FC:271:3,所以陰影AEC面積是:1.24.8.【答案】1:3【15如,正六形積為6,那么影分面為少212

4

4

212【考點】梯形模型【難度】星【型】解答【解析】連接陰圖形的長對角線,時六邊形被平分為兩半,根六邊形的特殊性質(zhì)和梯形蝴蝶定理把六邊形分為十八陰影部分占了其中八所陰影部分的面積.【答案】

【16如,已知D是BC中點,是的中點AC的點角由①⑥這6部分組其②⑤6平方米那三形ABC的面是少方厘?4--任意四邊形、梯形與相似模型題庫

page10of

④形形FCD形FCD35④形形FCD形FCD35③

F①

②⑤

⑥D(zhuǎn)E

【考點】梯形模型【難度】星【型】解答【解析】因為E是中,為AC中有且平行于AD,則四邊形為形.在梯形ADEF中有③④②⑤=③④②=AD=4已知-⑤=6,以⑤=,②⑤所以②⑤=④而③=所以③④梯的面積②③④⑤四塊圖形的面積和為8.CEF與面積比為CE平與CD平的,即.所以ADC面4積為梯形面的,即為1824為D是中點,以ADC的面積相,4-13而的積為、的積,即為2448平厘米.三角形A的積為平方厘米.【答案】48【17如圖在梯ABCD中與CD行點E、F分別是和BC中,已知陰四邊的積是54平方米則形ABCD的面是平方厘米A

B

A

BE

FE

FN

N

C【考點】梯形模型【難度】星【型】填空【解析】連接EF以把大梯形看成是兩個小梯形疊放在一起,應(yīng)用梯形蝴蝶定理以確定其中各個小三角形之間的比例關(guān)應(yīng)用比例即可求出梯ABCD面.設(shè)梯形ABCD的底為,面積為S.下底為2EFaa.所以:EF:a,EF:2.由于梯形ABFE和形的相,以SEFDCaa:a7,梯形形故

S,S.根據(jù)梯形蝴蝶定理梯形內(nèi)各三角形的之比2

:2

6:9,所以EMF

93S;12同理可得

7SS122839所以S,由54平厘米,EMF所以

210(平厘米.【答案】210【】如圖在一邊為的正形放一邊為2的方,持原方的邊行現(xiàn)在別連大方的個點小方的個點形成圖的陰圖,那么影分面4--任意四邊形、梯形與相似模型題庫

page11of13

eq\o\ac(△,)eq\o\ac(△,)形形DFE梯DFEeq\o\ac(△,)eq\o\ac(△,)形形DFE梯DFEeq\o\ac(△,)eq\o\ac(△,S)eq\o\ac(△,)【考點】梯形模型【難度】星【型】填空【解析】本題中正方形的位置不確定以可以通過取特殊值的方法來快速求解也以采用梯形蝴蝶定理來解決一般情況.解法一取特殊值,得兩個正方形的中心相重,右圖所,中四個空白三角形的高均為因此空白處的總面積為6陰部分的面積為6解法二:連接兩個正方形的對應(yīng)頂可以得到四個梯,四個梯形的上底都為下都為6,底、下底之比為,根據(jù)梯形蝴蝶定理,這個梯形每個形中的四個小三角形的面積之比為

:13:1

1:3:3:9所每個梯形中的空白三角形占該梯形面積的陰部分的面積占該梯形面積的所以陰影部的總面積是個形積的,那么陰影部的面積為16

)【答案】14【19如,在正形中、F分別BC與CD上,且BECF,連接BF、DE相于點G,過作、PQ得到個方和設(shè)方形的積,正形PCNG面為則S:___________.A

D

D

B

E

M

P

【考點】梯形模型【難度】星【型】填空【解析】連接、.設(shè)正方形ABCD邊長為則CF,DF所以

BD

.為EF

144

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論