線性方程組的直接方法詳解演示文稿_第1頁(yè)
線性方程組的直接方法詳解演示文稿_第2頁(yè)
線性方程組的直接方法詳解演示文稿_第3頁(yè)
線性方程組的直接方法詳解演示文稿_第4頁(yè)
線性方程組的直接方法詳解演示文稿_第5頁(yè)
已閱讀5頁(yè),還剩100頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

線性方程組的直接方法詳解演示文稿當(dāng)前1頁(yè),總共105頁(yè)。(優(yōu)選)線性方程組的直接方法當(dāng)前2頁(yè),總共105頁(yè)。線性方程組的數(shù)值解法一般有兩類:直接法:就是經(jīng)過(guò)有限步算術(shù)運(yùn)算,可求得方程組精確解的方法(若計(jì)算過(guò)程中沒(méi)有舍入誤差),如克萊姆法則就是一種直接法,直接法中具有代表性的算法是高斯(Gauss)消去法。迭代法:

就是用某種極限過(guò)程去逐步逼近線性方程組的精確解的方法。也就是從解的某個(gè)近似值出發(fā),通過(guò)構(gòu)造一個(gè)無(wú)窮序列去逼近精確解的方法。(一般有限步內(nèi)得不到精確解)當(dāng)前3頁(yè),總共105頁(yè)。三、特殊矩陣對(duì)角矩陣三對(duì)角矩陣上三角矩陣上海森伯(Hessenberg)陣對(duì)稱矩陣埃爾米特矩陣對(duì)稱正定矩陣正交矩陣酉矩陣初等置換陣置換陣當(dāng)前4頁(yè),總共105頁(yè)。定理1設(shè)A∈Rnⅹn,A非奇異?…?定理2若A∈Rnⅹn對(duì)稱正定矩陣,則?…?定理3若A∈Rnⅹn對(duì)稱矩陣,則對(duì)稱正定矩陣<=…?定理4(若當(dāng)標(biāo)準(zhǔn)型)…其中對(duì)角化的條件:1)…;2)….當(dāng)前5頁(yè),總共105頁(yè)。

§

5.2高斯消去法

5.2.1高斯消去法的基本思想先用一個(gè)簡(jiǎn)單實(shí)例來(lái)說(shuō)明Gauss法的基本思想例5.1解線性方程組

①②③解:

該方程組的求解過(guò)程實(shí)際上是將中學(xué)學(xué)過(guò)的消元法標(biāo)準(zhǔn)化,將一個(gè)方程乘或除以某個(gè)常數(shù),然后將兩個(gè)方程相加減,逐步減少方程中的未知數(shù),最終使每個(gè)方程只含有一個(gè)未知數(shù),從而得出所求的解。整個(gè)過(guò)程分為消元和回代兩個(gè)部分。

當(dāng)前6頁(yè),總共105頁(yè)。(1)消元過(guò)程第1步:將方程①乘上(-2)加到方程

②上去,將方程

①乘上加到方程

③上去,這樣就消去了第2、3個(gè)方程的項(xiàng),于是就得到等價(jià)方程組

④⑤當(dāng)前7頁(yè),總共105頁(yè)。第2步:將方程

④乘上加到方程

⑤上去,這樣就消去了第3個(gè)方程的項(xiàng),于是就得到等價(jià)方程組

⑥這樣,消元過(guò)程就是把原方程組化為上三角形方程組,其系數(shù)矩陣是上三角矩陣。

(2)回代過(guò)程回代過(guò)程是將上述三角形方程組自下而上求解,從而求得原方程組的解:

當(dāng)前8頁(yè),總共105頁(yè)。前述的消元過(guò)程相當(dāng)于對(duì)原方程組

的增廣矩陣進(jìn)行下列變換(表示增廣矩陣的第行)同樣可得到與原方程組等價(jià)的方程組⑥當(dāng)前9頁(yè),總共105頁(yè)。

由此看出,高斯消去法解方程組基本思想是設(shè)法消去方程組的系數(shù)矩陣A的主對(duì)角線下的元素,而將Ax=b化為等價(jià)的上三角形方程組,然后再通過(guò)回代過(guò)程便可獲得方程組的解。換一種說(shuō)法就是用矩陣行的初等變換將原方程組系數(shù)矩陣化為上三角形矩陣,而以上三角形矩陣為系數(shù)的方程組的求解比較簡(jiǎn)單,可以從最后一個(gè)方程開(kāi)始,依次向前代入求出未知變量這種求解上三角方程組的方法稱為回代,通過(guò)一個(gè)方程乘或除以某個(gè)常數(shù),以及將兩個(gè)方程相加減,逐步減少方程中的變?cè)獢?shù),最終將方程組化成上三角方程組,一般將這一過(guò)程稱為消元,然后再回代求解。通常把按照先消元,后回代兩個(gè)步驟求解線性方程組的方法稱為高斯(Gauss)消去法。當(dāng)前10頁(yè),總共105頁(yè)。5.2.2高斯消去法算法構(gòu)造

我們知道,線性方程組(6.1)用矩陣形式表示為

(6.3)解線性方程組(6.1)的高斯(Gauss)消去法的消元過(guò)程就是對(duì)(6.3)的增廣矩陣進(jìn)行行初等變換。將例6.1中解三階線性方程組的消去法推廣到一般的階線性方程組并記則高斯消去法的算法構(gòu)造歸納為:

當(dāng)前11頁(yè),總共105頁(yè)。⑴消元過(guò)程,斯消去法的消元過(guò)程由n-1步組成:第1步設(shè),把(6.3)中的第一列中元素消為零,令用乘以第1個(gè)方程后加到第個(gè)方程上去,消去第2~n個(gè)方程的未知數(shù),得到即

其中

當(dāng)前12頁(yè),總共105頁(yè)。第k步

(k=2,3,…,n-1)繼續(xù)上述消元過(guò)程,設(shè)第k-1次消元已經(jīng)完成,得到與原方程組等價(jià)的方程組

記為其中當(dāng)前13頁(yè),總共105頁(yè)。只要,消元過(guò)程就可以進(jìn)行下去,直到經(jīng)過(guò)n-1次消元之后,消元過(guò)程結(jié)束,得到與原方程組等價(jià)的上三角形方程組,記為

或者寫(xiě)成

當(dāng)前14頁(yè),總共105頁(yè)。即

(6.7)(2)回代過(guò)程就是對(duì)上三角方程組(6.7)自下而上逐步回代解方程組計(jì)算,即

當(dāng)前15頁(yè),總共105頁(yè)。(3)高斯消去法的計(jì)算步驟:①消元過(guò)程;設(shè)計(jì)算②回代過(guò)程

當(dāng)前16頁(yè),總共105頁(yè)。(4)高斯消去法流程圖

,(5)

Gauss消去法計(jì)算量≈①消元計(jì)算:aij(k+1)=aij(k)-mik

akj(k)

(i,j=k+1,k+2,…,n)

第一步計(jì)算乘數(shù)mik,mik=ai1/a11

(i=2,3,…,n)

需要n-1次除法運(yùn)算,

計(jì)算aij(2)(i,j=2,3,…,n)

需要(n-1)2次乘法運(yùn)算及(n-1)2次加減法運(yùn)算,當(dāng)前17頁(yè),總共105頁(yè)。第k步加減法次數(shù)乘法次數(shù)除法次數(shù)123…n-1(n-1)2(n-2)2(n-3)2…1(n-1)2(n-2)2(n-3)2…1(n-1)(n-2)(n-3)…1合計(jì)n(n-1)(2n-1)/6n(n-1)(2n-1)/6n(n-1)/2乘除法次數(shù):MD=n(n-1)(2n-1)/6+n(n-1)/2=1/3n(n2-1)加減法次數(shù):AS=n(n-1)(2n-1)/6當(dāng)前18頁(yè),總共105頁(yè)。算法.當(dāng)前19頁(yè),總共105頁(yè)。乘除法運(yùn)算工作量消元過(guò)程乘除法次數(shù):回代過(guò)程乘除法次數(shù):總的乘除法運(yùn)算次數(shù):非零判斷次數(shù)最多為:行交換的元素個(gè)數(shù)為:當(dāng)前20頁(yè),總共105頁(yè)。5.2.3高斯消去法的適用條件定理1方程組系數(shù)矩陣的順序主子式全不為零則高斯消去法能實(shí)現(xiàn)方程組的求解。證明上三角形方程組是從原方程組出發(fā),通過(guò)逐次進(jìn)行“一行乘一數(shù)加到另一行”而得出的,該變換不改變系數(shù)矩陣順序主子式的值。

當(dāng)前21頁(yè),總共105頁(yè)。設(shè)方程組系數(shù)矩陣,其順序主子式(m=1,2,…,n)

經(jīng)變換得到的上三角形方程組的順序主子式所以能實(shí)現(xiàn)高斯消去法求解

(m=1,2,…,n)當(dāng)前22頁(yè),總共105頁(yè)。定義5.1設(shè)矩陣每一行對(duì)角元素的絕對(duì)值都大于同行其他元素絕對(duì)值之和

則稱A為嚴(yán)格對(duì)角占優(yōu)矩陣。

定理1.1若方程組的系數(shù)矩陣A為嚴(yán)格對(duì)角占優(yōu),則用高斯消去法求解時(shí),全不為零。

當(dāng)前23頁(yè),總共105頁(yè)。證:先考察消元過(guò)程的第1步,因A為嚴(yán)格對(duì)角占優(yōu),故故,又根據(jù)高斯消去公式得

于是再利用方程組的對(duì)角占優(yōu)性,由上式可進(jìn)一步得又由得

故有當(dāng)A為嚴(yán)格對(duì)角占優(yōu)時(shí),,余下的子陣仍是對(duì)角占優(yōu)的,從而又有。依次類推全不為零。定理證畢。當(dāng)前24頁(yè),總共105頁(yè)。一般線性方程組使用高斯消去法求解時(shí),在消元過(guò)程中可能會(huì)出現(xiàn)的情況,這時(shí)消去法將無(wú)法進(jìn)行;即使,但它的絕對(duì)值很小時(shí),用其作除數(shù),會(huì)導(dǎo)致其他元素?cái)?shù)量級(jí)的嚴(yán)重增長(zhǎng)和舍入誤差的擴(kuò)散,將嚴(yán)重影響計(jì)算結(jié)果的精度。實(shí)際計(jì)算時(shí)必須避免這類情況的發(fā)生。主元素消去法就可彌補(bǔ)這一缺陷。

當(dāng)前25頁(yè),總共105頁(yè)。交換原則:通過(guò)方程或變量次序的交換,使在對(duì)角線位置上獲得絕對(duì)值盡可能大的系數(shù)作為akk(k),稱這樣的akk(k)

為主元素,并稱使用主元素的消元法為主元素法根據(jù)主元素選取范圍分為:列主元素法、行主元素法、全主元素法記筆記§5.3高斯主元素消去法當(dāng)前26頁(yè),總共105頁(yè)。主元素法的意義例3.2用高斯消去法求下列方程組的解

解:確定乘數(shù),再計(jì)算系數(shù)假設(shè)計(jì)算在4位浮點(diǎn)十進(jìn)值的計(jì)算機(jī)上求解,則有

這時(shí)方程組的實(shí)際形式是

由此回代解出,但這個(gè)解不滿足原方程組,解是錯(cuò)誤的。這是因?yàn)樗玫某龜?shù)太小使得上式在消元過(guò)程中“吃掉”了下式,解決這個(gè)問(wèn)題的方法之一就是采用列選主元高斯消元法。即按列選絕對(duì)值大的系數(shù)作為主元素,則將方程組中的兩個(gè)方程相交換,原方程組變?yōu)?/p>

得到消元后的方程組當(dāng)前27頁(yè),總共105頁(yè)。這時(shí)

因而方程組的實(shí)際形式是由此回代解出,這個(gè)結(jié)果是正確的可見(jiàn)用高斯消去法解方程組時(shí),小主元可能導(dǎo)致計(jì)算失敗,因?yàn)橛媒^對(duì)值很小的數(shù)作除數(shù),乘數(shù)很大,引起約化中間結(jié)果數(shù)量級(jí)嚴(yán)重增長(zhǎng),再舍入就使得計(jì)算結(jié)果不可靠了,故避免采用絕對(duì)值很小的主元素。以便減少計(jì)算過(guò)程中舍入誤差對(duì)計(jì)算解的影響。當(dāng)前28頁(yè),總共105頁(yè)。全主元素消去法

是通過(guò)方程或變量次序的交換,使在對(duì)角線位置上獲得絕對(duì)值盡可能大的系數(shù)作為,稱這樣的為主元素。盡管它的算法更穩(wěn)定,但計(jì)算量較大,實(shí)際應(yīng)用中大多數(shù)使用列主元素消去法即可滿足需要。

當(dāng)前29頁(yè),總共105頁(yè)。全主元素法不是按列選主元素,而是在全體待選系數(shù)中選取,則得全主元素法。例5.3用全主元素法解下列線組

10x1-19x2-2x3=3(1)-20x1+40x2+x3=4(2)x1+4x2+5x3=5(3)解:選擇所有系數(shù)中絕對(duì)值最大的40作為主元素,交換第一、二行和交換第一、二列使該主元素位于對(duì)角線的第一個(gè)位置上,得40x2-20x1+

x3=4(4)-19x2+10x1-2x3=3(5)

4x2+x1+5x3=5(6)記筆記當(dāng)前30頁(yè),總共105頁(yè)。計(jì)算m21=-19/40=0.475,m31=4/40=0.1(5)-m21(4),(6)-m31(4)消去x2

0.5x1–1.525x3=4.9(7)3x1+4.9

x3=4.6(8)選4.9為主元素

4.9x3+3x1=4.6(9)1.525x3+0.5x1=4.9(10)計(jì)算m32=-1.525/4.9=-0.31122,(10)-m32(9)消去x2得1.43366x1=6.33161(11)記筆記當(dāng)前31頁(yè),總共105頁(yè)。保留有主元素的方程40x2-20x1+

x3=4(4)

4.9x3+3x1=4.6(9)

1.43366x1=6.33161(11)進(jìn)行回代x1=4.41634

x3=-1.76511x2=2.35230當(dāng)前32頁(yè),總共105頁(yè)。5.3.2列主元素法列主元素法就是在待消元的所在列中選取主元,經(jīng)方程的行交換,置主元素于對(duì)角線位置后進(jìn)行消元的方法。例5.4用列主元素法解下列線性方程組

10x1-19x2-2x3=3(1)-20x1+40x2+x3=4(2)x1+4x2+5x3=5(3)解:選擇-20作為該列的主元素,-20x1+40x2+x3=3(4)

10x1-19x2-2x3=4(5)x1+4x2+5x3=5(6)計(jì)算m21

=10/-20=-0.5

m31=1/-20=-0.05當(dāng)前33頁(yè),總共105頁(yè)。(5)-m21(4),(6)-m31(4)得

x2–1.5x3=5(7)6x2+5.05x3=5.2(8)選6為主元素6x2+5.05x3=5.2(9)x2–1.5x3=5(10)計(jì)算m32=1/6=0.16667,

(10)-m32(9)得-2.34168x3=4.13332(11)記筆記當(dāng)前34頁(yè),總共105頁(yè)。保留有主元素的方程

-20x1+40x2+x3=4(4)6x2+5.05x3=5.2(9)-2.34168x3=4.13332(11)進(jìn)行回代x3=-1.76511x2=2.35230x1=4.41634記筆記

列選主元素的計(jì)算方法與高斯消去法完全一樣,不同的是在每步消元之前要按列選出主元當(dāng)前35頁(yè),總共105頁(yè)。例5.5用矩陣的初等行變換求解解方程組

解:用矩陣的初等行變換求解,對(duì)增廣矩陣

(下面帶下劃線元素為主元素)當(dāng)前36頁(yè),總共105頁(yè)。當(dāng)前37頁(yè),總共105頁(yè)?!?.4矩陣三角分解法

矩陣三角分解法是高斯消去法解線性方程組的一種變形解法

5.4.1矩陣三角分解原理

應(yīng)用高斯消去法解n階線性方程組Ax=b,經(jīng)過(guò)n步消元之后,得出一個(gè)等價(jià)的上三角型方程組A(n)x=b(n),對(duì)上三角形方程組用逐步回代就可以求出解來(lái)。上述過(guò)程可通過(guò)矩陣分解來(lái)實(shí)現(xiàn)。將非奇異陣A分解成一個(gè)下三角陣L和一個(gè)上三角陣U的乘積

A=LU

稱為對(duì)矩陣A的三角分解,又稱LU分解當(dāng)前38頁(yè),總共105頁(yè)。其中當(dāng)前39頁(yè),總共105頁(yè)。方程組Ax=b的系數(shù)矩陣A經(jīng)過(guò)順序消元逐步化為上三角型A(n),相當(dāng)于用一系列初等變換左乘A的結(jié)果。事實(shí)上,第1列消元將A(1)=A化為A(2),若令:則根據(jù)距陣左乘有L1A(1)=A(2)當(dāng)前40頁(yè),總共105頁(yè)。第2列消元將A(2)化為A(3),若令:經(jīng)計(jì)算可知L2A(2)=A(3),依此類推,一般有LkA(k)=A(k+1)當(dāng)前41頁(yè),總共105頁(yè)。mi1=a(1)

i1/a(1)

11i=2,3,……n于是矩陣經(jīng)過(guò)消元化為上三角陣的過(guò)程可表示為上述矩陣是一類初等矩陣,它們都是單位下三角陣,且其逆矩陣也是單位下三角陣,只需將改為,就得到。即

當(dāng)前42頁(yè),總共105頁(yè)。于是有

其中當(dāng)前43頁(yè),總共105頁(yè)。L為由乘數(shù)構(gòu)成的單位下三角陣,U為上三角陣,由此可見(jiàn),在的條件下,高斯消去法實(shí)質(zhì)上是將方程組的系數(shù)矩陣A分解為兩個(gè)三角矩陣的乘積A=LU。這種把非奇異矩陣A分解成一個(gè)下三角矩陣L和一個(gè)上三角矩陣U的乘積稱為矩陣的三角分解,又稱LU分解。顯然,如果,由行列式的性質(zhì)知,方程組系數(shù)矩陣A的前n-1個(gè)順序主子矩陣非奇異,即順序主子式不等于零,即當(dāng)前44頁(yè),總共105頁(yè)。其中(A的主子陣)

反之,可用歸納法證明,如果A的順序主子式則于是得到下述定理:

當(dāng)前45頁(yè),總共105頁(yè)。定理6.2設(shè)。如果A順序各階主子式,,則A可惟一地分解成一個(gè)單位下三角陣L和一個(gè)非奇異的上三角陣U的乘積。證:由于A各階主子式不為零,則消元過(guò)程能進(jìn)行到底,前面已證明將方程組的系數(shù)矩陣A用初等變換的方法分解成兩個(gè)三角矩陣的乘積A=LU的過(guò)程。

現(xiàn)僅證明分解的惟一性。設(shè)A有兩種LU分解其中為單位下三角陣,為上三角陣

∵A的行列式均為非奇異矩陣,有上式兩邊左邊同乘,右邊同乘得上式左邊為單位下三角陣,右邊為上三角陣,故應(yīng)為單位陣,即惟一性得證。當(dāng)前46頁(yè),總共105頁(yè)。把A分解成一個(gè)單位上三角陣L和一個(gè)下三角陣U的乘積稱為杜利特爾(Doolittle)分解。其中

當(dāng)前47頁(yè),總共105頁(yè)。若把A分解成一個(gè)下三角陣L和一個(gè)單位上三角陣U的乘積稱為克洛特分解Crout)

其中當(dāng)前48頁(yè),總共105頁(yè)。5.4.2用三角分解法解方程組求解線性方程組Ax=b時(shí),先對(duì)非奇異矩陣A進(jìn)行LU分解使A=LU,那么方程組就化為

LUx=b從而使問(wèn)題轉(zhuǎn)化為求解兩個(gè)簡(jiǎn)單的的三角方程組

Ly=b求解yUx=y求解x這就是求解線性方程組的三角分解法的基本思想。下面只介紹杜利特爾(Doolittle)分解法。設(shè)A=LU為當(dāng)前49頁(yè),總共105頁(yè)。由矩陣乘法規(guī)則由此可得U的第1行元素和L的第1列元素當(dāng)前50頁(yè),總共105頁(yè)。再確定U的第k行元素與L的第k列元素,對(duì)于k=2,3,…,n計(jì)算:①

計(jì)算U的第k行元素

(j=k,k+1,…,n)

②計(jì)算L的第k列元素(i=k,k+1,…,n)

當(dāng)前51頁(yè),總共105頁(yè)。利用上述計(jì)算公式便可逐步求出U與L的各元素求解Ly=b,即計(jì)算:

求解Ux=y,即計(jì)算:當(dāng)前52頁(yè),總共105頁(yè)。顯然,當(dāng)時(shí),解Ax=b直接三角分解法計(jì)算才能完成。設(shè)A為非奇異矩陣,當(dāng)時(shí)計(jì)算將中斷或者當(dāng)絕對(duì)值很小時(shí),按分解公式計(jì)算可能引起舍入誤差的積累,因此可采用與列主元消去法類似的方法,對(duì)矩陣進(jìn)行行交換,則再實(shí)現(xiàn)矩陣的三角分解。用直接三角分解法解Ax=b大約需要次乘除法。

當(dāng)前53頁(yè),總共105頁(yè)。例6.8用三角分解法解方程組

求解

Ly=b得

y=[2,2,1]T

求解Ux=y得x=[-1,0,1]T所以方程組的解為

當(dāng)前54頁(yè),總共105頁(yè)?!?.5解三對(duì)角線方程組的追趕法在數(shù)值計(jì)算中,有一種系數(shù)矩陣是三對(duì)角方程組

簡(jiǎn)記為Ax=f,A滿足條件(對(duì)角占優(yōu))(1)(2)(3)當(dāng)前55頁(yè),總共105頁(yè)。用歸納法可以證明,滿足上述條件的三對(duì)角線性方程組的系數(shù)矩陣A非奇異,所以可以利用矩陣的直接三角分解法來(lái)推導(dǎo)解三對(duì)角線性方程組的計(jì)算公式,用克洛特分解法,將A分解成兩個(gè)三角陣的乘積,設(shè)A=LU

按乘法展開(kāi)

則可計(jì)算

可依次計(jì)算當(dāng),由上式可惟一確定L和U。

當(dāng)前56頁(yè),總共105頁(yè)。例3.9用追趕法求解三對(duì)角方程組

解由Ly=f

解出y又由Ux=y解出x當(dāng)前57頁(yè),總共105頁(yè)。5.6解正定矩陣方程的平方根法工程實(shí)際計(jì)算中,線性方程組的系數(shù)矩陣常常具有對(duì)稱正定性,其各階順序主子式及全部特征值均大于0。矩陣的這一特性使它的三角分解也有更簡(jiǎn)單的形式,從而導(dǎo)出一些特殊的解法,如平方根法與改進(jìn)的平方根法。

定理6

設(shè)A是正定矩陣,則存在惟一的對(duì)角元素均為正數(shù)的下三角陣L,使A=LLT證:因A是正定矩陣,A的順序主子式?i>0,i=1,2,…,n

因此存在惟一的分解A=LU

當(dāng)前58頁(yè),總共105頁(yè)。L是單位下三角陣,U是上三角陣,將U再分解

其中D為對(duì)角陣,U0為單位上三角陣,于是

A=LU=LDU0

又A=AT=U0TDLT由分解惟一性,即得

U0T=LA=LDLT

當(dāng)前59頁(yè),總共105頁(yè)。記

又因?yàn)閐et(Ak)>0,(k=1,2,…,n),故于是對(duì)角陣D還可分解

其中為下三角陣,令L=L1,定理得證。當(dāng)前60頁(yè),總共105頁(yè)。將A=LLT展開(kāi),寫(xiě)成

按矩陣乘法展開(kāi),可逐行求出分解矩陣L的元素,計(jì)算公式是對(duì)于i=1,2,…,n

j=i+1,i+2,…,n

這一方法稱為平方根法,又稱喬累斯基(Cholesky)分解,它所需要的乘除次數(shù)約為數(shù)量級(jí),比LU分解節(jié)省近一般的工作量。

當(dāng)前61頁(yè),總共105頁(yè)。例6.9平方根法求解方程組

解:因方程組系數(shù)矩陣對(duì)稱正定,設(shè)A=,即:由Ly=b解得由解得

由此例可以看出,平方根法解正定方程組的缺點(diǎn)是需要進(jìn)行開(kāi)方運(yùn)算。為避免開(kāi)方運(yùn)算,我們改用單位三角陣作為分解陣,即把對(duì)稱正定矩陣A分解成

的形式,其中

當(dāng)前62頁(yè),總共105頁(yè)。為對(duì)角陣,而

是單位下三角陣,這里分解公式為當(dāng)前63頁(yè),總共105頁(yè)。據(jù)此可逐行計(jì)算

運(yùn)用這種矩陣分解方法,方程組Ax=b即可歸結(jié)為求解兩個(gè)上三角方程組

和其計(jì)算公式分別為

和求解方程組的上述算法稱為改進(jìn)的平方根法。這種方法總的計(jì)算量約為,即僅為高斯消去法計(jì)算量的一半。當(dāng)前64頁(yè),總共105頁(yè)。記筆記§5.7向量和矩陣的范數(shù)

為了研究線性方程組近似解的誤差估計(jì)和迭代法的收斂性,有必要對(duì)向量及矩陣的“大小”引進(jìn)某種度量----范數(shù)的概念。向量范數(shù)是用來(lái)度量向量長(zhǎng)度的,它可以看成是二、三維解析幾何中向量長(zhǎng)度概念的推廣。用Rn表示n維實(shí)向量空間。當(dāng)前65頁(yè),總共105頁(yè)。記筆記§5.7向量和矩陣的范數(shù)定義5.2

對(duì)任一向量XRn,按照一定規(guī)則確定一個(gè)實(shí)數(shù)與它對(duì)應(yīng),該實(shí)數(shù)記為||X||,若||X||滿足下面三個(gè)性質(zhì):(1)||X||0;||X||=0當(dāng)且僅當(dāng)X=0;(2)對(duì)任意實(shí)數(shù),||X||=||||X||;對(duì)任意向量YRn,||X+Y||||X||+||Y||

則稱該實(shí)數(shù)||X||為向量X的范數(shù)當(dāng)前66頁(yè),總共105頁(yè)。在Rn中,常用的幾種范數(shù)有:記筆記其中x1,x2,…,xn分別是X的n個(gè)分量。以上定義的范數(shù)分別稱為1-范數(shù),2-范數(shù)和-范數(shù)可以驗(yàn)證它們都是滿足范數(shù)性質(zhì)的,其中是由內(nèi)積導(dǎo)出的向量范數(shù)?!?.7向量和矩陣的范數(shù)當(dāng)前67頁(yè),總共105頁(yè)。當(dāng)不需要指明使用哪一種向量范數(shù)時(shí),就用記號(hào)||.||泛指任何一種向量范數(shù)。有了向量的范數(shù)就可以用它來(lái)衡量向量的大小和表示向量的誤差。設(shè)x*為Ax=b的精確解,x為其近似解,則其絕對(duì)誤差可表示成||x-x*||,其相對(duì)誤差可表示成記筆記§5.7向量和矩陣的范數(shù)或當(dāng)前68頁(yè),總共105頁(yè)。當(dāng)前69頁(yè),總共105頁(yè)。例5.10證明對(duì)任意同維向量x,y有

證:

即當(dāng)前70頁(yè),總共105頁(yè)。例5.11設(shè)x=(1,0,-1,2)T,計(jì)算

解:=1+0+|-1|+2=4當(dāng)前71頁(yè),總共105頁(yè)。定理7.1對(duì)于任意向量x,有證:∵

∴即

當(dāng)p→∞,

∴當(dāng)前72頁(yè),總共105頁(yè)。定義5.4(向量序列的極限)設(shè)為中的一向量序列,,記。如果(i=1,2,…,n),則稱收斂于向量,記為定理7.2(向量范數(shù)的等價(jià)性)設(shè)為上任意兩種向量范數(shù),則存在常數(shù)C1,,C2>0,使得對(duì)任意恒有(證:略)

當(dāng)前73頁(yè),總共105頁(yè)。定理7

其中為向量中的任一種范數(shù)。

證由于

而對(duì)于上的任一種范數(shù),由定理3.7知存在常數(shù)C1,C2,使于是可得從而定理得證。當(dāng)前74頁(yè),總共105頁(yè)。定義5.5(矩陣的范數(shù))如果矩陣的某個(gè)

非負(fù)的實(shí)值函數(shù),滿足則稱是上的一個(gè)矩陣范數(shù)(或模)當(dāng)前75頁(yè),總共105頁(yè)。矩陣范數(shù)的性質(zhì)可由向量范數(shù)定義直接驗(yàn)證。(1)設(shè)A≠0,x≠0,使Ax≠0,根據(jù)向量范數(shù)的性質(zhì)Ax>0,所以>0x≠0,使Ax=0,則=0當(dāng)A=0時(shí),當(dāng)前76頁(yè),總共105頁(yè)。矩陣范數(shù)的性質(zhì)可由向量范數(shù)定義直接驗(yàn)證∴(2)根據(jù)向量范數(shù)的性質(zhì)當(dāng)前77頁(yè),總共105頁(yè)。矩陣范數(shù)的性質(zhì)可由向量范數(shù)定義直接驗(yàn)證(3)當(dāng)前78頁(yè),總共105頁(yè)。矩陣范數(shù)定義的另一種方法是這是由于同樣,矩陣范數(shù)和向量范數(shù)密切相關(guān),向量范數(shù)有相應(yīng)的矩陣范數(shù),即當(dāng)前79頁(yè),總共105頁(yè)。當(dāng)前80頁(yè),總共105頁(yè)。定義5.7(矩陣的譜半徑)設(shè)的特征值為,稱為A的譜半徑。例5.12計(jì)算方陣

的三種常用范數(shù)當(dāng)前81頁(yè),總共105頁(yè)。例5.12計(jì)算方陣

的三種范數(shù)

解先計(jì)算

所以

,從而

當(dāng)前82頁(yè),總共105頁(yè)。定理5.8.1設(shè)A為n階方陣,則對(duì)任意矩陣范數(shù)都有證:設(shè)為A的特征值,x是對(duì)應(yīng)于的特征向量,則x=Ax。兩端取范數(shù)并依據(jù)其性質(zhì)得由于x≠0,故,所以當(dāng)前83頁(yè),總共105頁(yè)。當(dāng)前84頁(yè),總共105頁(yè)。5.8誤差分析5.8.1方程組的性態(tài)

在建立方程組時(shí),其系數(shù)往往含有誤差(如觀測(cè)誤差或計(jì)算誤差),就是說(shuō),所要求解的運(yùn)算是有擾動(dòng)的方程組,因此需要研究擾動(dòng)對(duì)解的影響。

當(dāng)前85頁(yè),總共105頁(yè)。例5.13考察方程組

和上述兩個(gè)方程組盡管只是右端項(xiàng)有微小擾動(dòng),但解大不相同,第1個(gè)方程組的解是第2個(gè)方程組的解是。這類方程組稱為病態(tài)的。當(dāng)前86頁(yè),總共105頁(yè)。定義5.8A或b的微小變化(又稱擾動(dòng)或攝動(dòng))引起方程組Ax=b解的巨大變化,則稱方程組為病態(tài)方程組,矩陣A稱為病態(tài)矩陣。否則方程組是良態(tài)方程組,矩陣A也是良態(tài)矩陣

為了定量地刻畫(huà)方程組“病態(tài)”的程度,要對(duì)方程組Ax=b進(jìn)行討論,考察A(或b)微小誤差對(duì)解的影響。為此先引入矩陣條件數(shù)的概念。定義5.9(矩陣條件數(shù))設(shè)A為非奇異矩陣,稱為矩陣A條件數(shù)。當(dāng)前87頁(yè),總共105頁(yè)。當(dāng)前88頁(yè),總共105頁(yè)。當(dāng)前89頁(yè),總共105頁(yè)。我們先來(lái)考察常數(shù)項(xiàng)b的微小誤差對(duì)解的影響。設(shè)A是精確的,b有誤差(或擾動(dòng))δb,顯然,方程組的解與x有差別,記為即有即(由設(shè)Ax=b≠0)于是(6.18)又∵Ax=b≠0,則有由(6.18)式及(6.19)式即得如下定理

(6.19)或當(dāng)前90頁(yè),總共105頁(yè)。定理

5.12(b的擾動(dòng)對(duì)解的影響)設(shè)A非奇異,

Ax=b≠0,且則有

證:設(shè)A精確且非奇異,b有擾動(dòng)δb,使解x有擾動(dòng)δx,則

消去Ax=b,有又相比較可得

當(dāng)前91頁(yè),總共105頁(yè)。定理5.13(A的擾動(dòng)對(duì)解的影響)設(shè)A非奇異,Ax=b≠0,且若

,則

證:略當(dāng)前92頁(yè),總共105頁(yè)。我們還可證明更為一般的結(jié)論:當(dāng)方程組的系數(shù)矩陣A非奇異和常數(shù)項(xiàng)b為非零向量時(shí),且同時(shí)有擾動(dòng)δA,δb,滿足,若x和x+δx分別是方程組Ax=b及的解則當(dāng)前93頁(yè),總共105頁(yè)。例6.13線性方程組的系數(shù)矩陣帶誤差,成為如下方程組求方程組系數(shù)矩陣的條件數(shù),并說(shuō)明方程組的性態(tài)

解因?yàn)?/p>

所以

因此方程組是良態(tài)的當(dāng)前94頁(yè),總共105頁(yè)。5.7.2精度分析求得方程組Ax=b的一個(gè)近似解以后,希望判斷其精度,檢驗(yàn)精度的一個(gè)簡(jiǎn)單辦法是將近似解再回代到原方程組去求出余量r.

r=b-A如果r很小,就認(rèn)為解是相當(dāng)精確的。定理6.14設(shè)是方程組Ax=b的一個(gè)近似解,其精確解記為,r為的余量。則有

證明見(jiàn)P172當(dāng)前95頁(yè),總共105頁(yè)。例5.14設(shè)A為正交矩陣,證明:cond2(A)=1分析:由正交矩陣和條件數(shù)的定義便可推得解:因?yàn)锳是正交矩陣,故ATA=AAT=I

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論