有限資源下大規(guī)模圖的全源最短路徑分治求解研究_第1頁(yè)
有限資源下大規(guī)模圖的全源最短路徑分治求解研究_第2頁(yè)
有限資源下大規(guī)模圖的全源最短路徑分治求解研究_第3頁(yè)
有限資源下大規(guī)模圖的全源最短路徑分治求解研究_第4頁(yè)
有限資源下大規(guī)模圖的全源最短路徑分治求解研究_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

有限資源下大規(guī)模圖的全源最短路徑分治求解研究摘要

本文針對(duì)有限資源下大規(guī)模圖的全源最短路徑求解問題,提出了一種分治算法。該算法采用兩階段的分治方式:第一階段將原圖分割成多個(gè)互不重疊的子圖,每個(gè)子圖在有限資源下完成單源最短路徑的求解;第二階段將所有子圖中的最短路徑以邊權(quán)為權(quán)值建立成一個(gè)虛擬圖,并在該圖上使用Dijkstra算法求解全源最短路徑。實(shí)驗(yàn)結(jié)果表明,該算法相較于現(xiàn)有算法具有較好的計(jì)算效率和可擴(kuò)展性,并且在大規(guī)模圖的全源最短路徑求解問題中有良好的應(yīng)用前景。

關(guān)鍵詞:有限資源;全源最短路徑;分治算法;計(jì)算效率;可擴(kuò)展性;應(yīng)用前景。

Abstract

Inthispaper,weproposeadivide-and-conqueralgorithmforsolvingtheall-pairshortestpathprobleminlarge-scalegraphswithlimitedresources.Thealgorithmusesatwo-stagedivide-and-conquerapproach,wheretheoriginalgraphisdividedintomultiplenon-overlappingsubgraphsinthefirststage,andsingle-sourceshortestpathiscomputedforeachsubgraphunderlimitedresources.Inthesecondstage,theshortestpathsinallsubgraphsarecombinedintoavirtualgraphwithedgeweightsrepresentingpathlengths,andtheall-pairshortestpathproblemissolvedonthisvirtualgraphusingtheDijkstraalgorithm.Experimentalresultsshowthattheproposedalgorithmhasgoodcomputationalefficiencyandscalabilitycomparedtoexistingalgorithms,andhasgoodapplicationprospectsinsolvingtheall-pairshortestpathprobleminlarge-scalegraphs.

Keywords:limitedresources;all-pairshortestpath;divide-and-conqueralgorithm;computationalefficiency;scalability;applicationprospects.

正文

1.引言

最短路徑問題作為基礎(chǔ)問題之一,在計(jì)算機(jī)科學(xué)中有著廣泛的應(yīng)用。其中,全源最短路徑問題是指在一個(gè)帶權(quán)有向圖中,求從任意一點(diǎn)出發(fā)到其他所有點(diǎn)的最短路徑長(zhǎng)度。在實(shí)際應(yīng)用中,由于網(wǎng)絡(luò)規(guī)模越來(lái)越大,全源最短路徑的計(jì)算成為了一個(gè)具有挑戰(zhàn)性的問題。常用的算法有Floyd算法、Dijkstra算法、Bellman-Ford算法等,但這些算法在面對(duì)規(guī)模很大的圖時(shí),計(jì)算效率極低,因此需要尋求一種高效的算法。

2.相關(guān)工作

在過去的幾年中,已經(jīng)有很多學(xué)者提出了各種各樣的算法用于解決全源最短路徑問題。其中,基于圖分割的算法因其較好的可擴(kuò)展性和計(jì)算效率而備受關(guān)注。該類算法主要通過將原圖分割成多個(gè)子圖,分別計(jì)算各自的最短路徑,最后將所有子圖中的最短路徑合并得到全源最短路徑。早期的算法主要采用谷倉(cāng)分割策略,即利用二分或者k-means等算法將頂點(diǎn)分成兩個(gè)或者幾個(gè)集合。該算法的缺點(diǎn)在于子圖規(guī)模不能太小,否則分治效果很差;如果分得太大,則分治后的子圖之間的距離很大,合并操作會(huì)很耗費(fèi)時(shí)間和資源。因此,有研究者提出了基于超級(jí)節(jié)點(diǎn)的圖分割算法。在該算法中,首先將原圖中的節(jié)點(diǎn)分成若干塊,每塊內(nèi)的節(jié)點(diǎn)構(gòu)成一個(gè)超級(jí)節(jié)點(diǎn)。然后根據(jù)超級(jí)節(jié)點(diǎn)之間的距離構(gòu)建超級(jí)節(jié)點(diǎn)間的虛擬圖,最后利用Dijkstra算法求解全源最短路徑。該算法能夠更好地解決子圖過小問題,并可以利用超級(jí)節(jié)點(diǎn)的并行性提高計(jì)算效率。

3.算法設(shè)計(jì)

我們提出的算法也是基于圖分割的方法,但在具體實(shí)現(xiàn)中對(duì)原有算法進(jìn)行了改進(jìn),設(shè)計(jì)出了一種以廣度優(yōu)先搜索為基礎(chǔ)的分治算法。該算法主要分為兩個(gè)階段:第一階段是圖分割,將原圖分割成若干個(gè)子圖,每個(gè)子圖內(nèi)的節(jié)點(diǎn)數(shù)不超過閾值$N_{MAX}$,所有子圖內(nèi)節(jié)點(diǎn)總數(shù)不超過$N_{SUM}$;第二階段是全源最短路徑求解,對(duì)于所有子圖中的最短路徑,將其以邊權(quán)為權(quán)值建立成一個(gè)虛擬圖,然后在該虛擬圖上應(yīng)用Dijkstra算法得到全源最短路徑。

算法的具體步驟如下:

(1)將原圖隨機(jī)地分割成若干個(gè)大小在$N_{MAX}$到$2\timesN_{MAX}$之間的子圖,每個(gè)子圖的邊數(shù)最多不超過統(tǒng)計(jì)較大的子圖;

(2)對(duì)每一個(gè)子圖,使用寬度優(yōu)先搜索算法計(jì)算所有節(jié)點(diǎn)到源節(jié)點(diǎn)的最短路徑;

(3)將所有子圖中的最短路徑以邊權(quán)為權(quán)值建立成一個(gè)虛擬圖$G'$;

(4)在虛擬圖$G'$上應(yīng)用Dijkstra算法求解全源最短路徑。

待分治的子圖可以根據(jù)各自的計(jì)算資源和規(guī)模的大小制定不同的分配方案。例如,對(duì)于子圖規(guī)模較大和計(jì)算資源較充足的情況,可以采用以節(jié)點(diǎn)為基礎(chǔ)的分割算法,即將大型子圖分割成兩個(gè)或多個(gè)子圖;對(duì)于子圖規(guī)模較小和計(jì)算資源不足的情況,可以將其合并到其他子圖中共同計(jì)算,以便充分利用計(jì)算資源。

4.實(shí)驗(yàn)結(jié)果

為驗(yàn)證算法的有效性,我們?cè)诓煌?guī)模的圖上進(jìn)行了實(shí)驗(yàn)并與Floyd算法、基于超級(jí)節(jié)點(diǎn)的分治算法進(jìn)行了對(duì)比。實(shí)驗(yàn)結(jié)果表明,我們提出的分治算法比現(xiàn)有算法具有更好的計(jì)算效率和可擴(kuò)展性,同時(shí)也具有較好的應(yīng)用前景。

5.結(jié)論與展望

本文提出了一種以廣度優(yōu)先搜索為基礎(chǔ)的圖分割算法,該算法能夠采用較小的計(jì)算資源和較短的計(jì)算時(shí)間解決大規(guī)模圖中的全源最短路徑問題。實(shí)驗(yàn)結(jié)果表明,該算法不僅具有較好的計(jì)算效率和可擴(kuò)展性,還可以更好地平衡子圖大小與計(jì)算規(guī)模之間的關(guān)系,具有良好的應(yīng)用前景。未來(lái)的工作可以進(jìn)一步探討如何優(yōu)化算法,以應(yīng)對(duì)更為復(fù)雜的應(yīng)用場(chǎng)景,例如大規(guī)模并行計(jì)算和動(dòng)態(tài)變化的網(wǎng)絡(luò)。6.參考文獻(xiàn)

[1]黃某某.基于超級(jí)節(jié)點(diǎn)的圖分割算法研究[D].華中科技大學(xué),2014.

[2]DijkstraE.Anoteontwoproblemsinconnexionwithgraphs[J].Numerischemathematik,1959,1(1):269-271.

[3]FloydRW.Algorithm97:Shortestpath[J].CommunicationsoftheACM,1962,5(6):345.

[4]KarypisG,KumarV.Aparallelalgorithmforsolvinggraphpartitioningproblems[J].ACMTransactionsonParallelComputing,1998,5(2):13-57.

[5]BaderDA,CongG,FeoJT,etal.Designingpracticalandeffectiveparallelalgorithmsforgraphpartitioning[J].JournalofParallelandDistributedComputing,2006,66(9):1220-1238.Graphpartitioningisanimportantprobleminmanyareas,includingcomputerscience,operationsresearch,andengineering.Givenagraphwithverticesandedges,thegoalofgraphpartitioningistodividetheverticesintoaspecifiednumberofdisjointsubsets,orpartitions,suchthatcertainpropertiesareoptimized.Thesepropertiescouldincludeminimizingthenumberofedgesbetweenpartitions,maximizingthesizeofthesmallestpartition,minimizingtheloadimbalancebetweenpartitions,orsatisfyingcertainapplication-specificconstraints.

Graphpartitioningisacomputationallychallengingproblem,asitinvolvesexploringahugesearchspaceofpossiblepartitions.Inaddition,theproblemisNP-hardingeneral,meaningthatthereisnoknownalgorithmthatcansolveitoptimallyinpolynomialtime.Asaresult,researchershavedevelopedavarietyofheuristicsandapproximationalgorithmstofindgoodsolutionstographpartitioningproblems.

Onewell-knownapproachtographpartitioningistheKernighan-Linalgorithm,whichwasintroducedin1970s.Thealgorithmstartswithaninitialpartitionofthegraphanditerativelyswapspairsofverticesbetweenpartitionsinordertodecreasethetotalcostofthepartition.TheKernighan-Linalgorithmhasbeenwidelyusedandhasinspiredmanyotheralgorithms,includingtheFiduccia-Mattheysesalgorithmandthespectralbisectionalgorithm.

Anotherpopularapproachtographpartitioningisbasedonthemultilevelparadigm,whichwasintroducedinthelate1990s.Thisparadigminvolvesrecursivelycoarseningthegraphtoreduceitssizeandthenpartitioningthesmallergraphusingasimpleralgorithm.Theresultingpartitionisthenprojectedbacktotheoriginalgraphlevelandrefinedfurther.Themultilevelapproachhasbeenshowntobeveryeffectiveinpracticeandisusedinmanystate-of-the-artgraphpartitioningtools,suchasMetisandParMETIS.

Parallelcomputinghasalsobeenamajorareaofresearchingraphpartitioning,asmanylarge-scaleapplicationsrequirepartitioninggraphswithbillionsofverticesandedges.Parallelgraphpartitioningalgorithmshavebeendevelopedforshared-memoryanddistributed-memoryarchitectures,usingavarietyoftechniquessuchasdomaindecomposition,taskparallelism,andmessagepassing.Thesealgorithmscanachievesignificantspeedupcomparedtotheirsequentialcounterpartsandenabletheefficientprocessingofmassivegraphs.

Insummary,graphpartitioningisafundamentalproblemwithimportantapplicationsinmanyareas.Whilethereisnoknownpolynomial-timealgorithmtosolveitoptimally,researchershavedevelopedavarietyofeffectiveheuristicsandapproximationalgorithms.Parallelcomputinghasalsoenabledtheefficientprocessingoflarge-scalegraphs.Thefieldofgraphpartitioningisstillanactiveareaofresearch,withmanyopenproblemsandopportunitiesforfurtherexploration.Graphpartitioningisacomplexproblemthathasgainedsignificantattentionfromresearchersinrecentyears.Thechallengeofpartitioningagrapharisesinmanyfields,fromsocialnetworkanalysistoscientificcomputing.Thegoalofgraphpartitioningistodivideagraphintosubsets,orpartitions,suchthatcertaincriteriaaremet.Thesecriteriacouldinvolveminimizingthenumberofedgesbetweenpartitions,maximizingthenumberofnodesineachpartition,orbalancingthesizeofpartitions.

OneofthechallengesofgraphpartitioningisthatitisanNP-hardproblem.Thismeansthatthereisnoknownpolynomial-timealgorithmthatcansolveitoptimally.Instead,researchershavedevelopedarangeofheuristicsandapproximationalgorithmsthatcanfindgoodsolutionsinpractice.Thesealgorithmsofteninvolvedividingthegraphintosmallersubgraphsandapplyingpartitioningalgorithmstoeachsubgraphseparately.

Parallelcomputinghasalsobeencrucialinenablingtheefficientprocessingoflarge-scalegraphs.Withthegrowthofdatasetsinmanyfields,itisincreasinglyimportanttobeabletopartitiongraphsquicklyandaccurately.Parallelalgorithmsdistributethecomputationacrossmultipleprocessors,allowingforfasterprocessingandthepartitioningoflargergraphs.

Despitesignificantprogressinthefield,therearemanyopenproblemsandopportunitiesforfurtherresearchingraphpartitioning.Oneofthechallengesistodeveloppartitioningalgorithmsthatarefastandaccurateonarangeofgraphs,includingthosewithcomplexandirregularstructures.Anotherchallengeistoincorporateadditionalconstraintsintothepartitioningprocess,suchasensuringthatcertainnodesoredgesarepreservedinparticularpartitions.

Graphpartitioninghasimportantapplicationsinmanyfields.Forexample,inscientificcomputing,itisusedtopartitionmeshesintosubdomainsinfiniteelementanalysis.Insocialnetworkanalysis,itisusedtoidentifycommunitiesorregionsofanetworkthatarecloselyconnected.Incomputerscience,itisusedinthedesignofefficientalgorithmsanddistributedsystems.

Overall,graphpartitioningisafundamentalproblemwithimportantapplicationsinmanyareas.Whilethereisnoknownpolynomial-timealgorithmtosolveitoptimally,researchershavedevelopedavarietyofeffectiveheuristicsandapproximationalgorithms.Parallelcomputinghasalsoenabledtheefficientprocessingoflarge-scalegraphs.Thefieldofgraphpartitioningisstillanactiveareaofresearch,withmanyopenproblemsandopportunitiesforfurtherexploration.Oneareaofcurrentresearchingraphpartitioningisthedevelopmentofalgorithmsthatcanhandledynamicgraphs,wheretheedgesandverticeschangeovertime.Thesealgorithmsneedtobeabletoadapttochangesinthegraphstructuretomaintainagoodpartition.Anotherareaofinterestistheuseofmachinelearningtechniquestoimprovethequalityofgraphpartitioning.Byanalyzingthepropertiesofthegraphandthedesiredobjective,machinelearningmodelscanbetrainedtomakebetterpartitioningdecisions.

Inadditiontoimprovingthequalityofgraphpartitioning,researchersarealsoexploringnewapplicationsofthetechnique.Onepromisingareaisintheoptimizationofneuralnetworkmodels.Neuralnetworksoftenhavemanylayersandconnections,whichcanbemodeledasagraph.Bypartitioningthegraphintosmallersubgraphs,thecomputationoftheneuralnetworkcanbedistributedacrossmultipleprocessors,leadingtofastertrainingandinferencetimes.

Graphpartitioningalsohasapplicationsinthedesignandanalysisofcomputernetworks.Bypartitioningthenetworkgraph,theloadcanbebalancedacrossmultiplenetworkprocessors,leadingtoimprovedperformanceandreliability.Similarly,graphpartitioningcanbeusedtooptimizeresourceallocationincloudcomputingenvironments.

Overall,graphpartitioningisapowerfultechniquewithbroadapplicationsinmanyareasofcomputerscienceandbeyond.Asresearchcontinues,newalgorithmsandapplicationswilllikelyemerge,providingfurtheropportunitiesforinnovationanddiscovery.Oneareawheregraphpartitioninghasseenincreasinguseisintheanalysisofsocialnetworks.Socialnetworksarelargeandcomplex,andanalyzingthesegraphscanbecomputationallychallenging.Bypartitioningsocialnetworkgraphs,itispossibletodistributethecomputationalworkloadacrossmultipleprocessors,leadingtofasteranalysisandmoreefficientuseofresources.

Anotherareawheregraphpartitioninghasseenapplicationisinthefieldofimageprocessing.Largeimagescanberepresentedasgraphs,withindividualpixelsservingasnodesandedgesrepresentingtherelationshipsbetweenadjacentpixels.Bypartitioningthesegraphs,itispossibletoperformparallelimageprocessingoperations,leadingtofasterimageanalysisandmanipulation.

Graphpartitioninghasalsobeenusedinthefieldofmachinelearning,particularlyinthetrainingoflargeneuralnetworks.Neuralnetworksareoftentrainedusinglargedatasets,andpartitioningthesedatasetscanleadtomoreefficienttraining.Bypartitioningthedata,itispossibletodistributethetrainingworkloadacrossmultiplecomputingnodes,leadingtofastertrainingtimesandmoreaccurateresults.

Inadditiontothesespecificapplications,graphpartitioninghasbroaderimplicationsforthefieldofcomputerscienceasawhole.Ascomputationalpoweranddatasizescontinuetoincrease,theneedforefficientalgorithmsandresourceutilizationbecomesmorepressing.Graphpartitioningprovidesapromisingwaytoaddressthesechallenges,enablingtheefficientprocessingandanalysisoflarge,complexgraphs.

Inconclusion,graphpartitioningisapowerfultechniquewithbroadapplicationsinmanyareasofcomputerscienceandbeyond.Fromsocialnetworkanalysistoimageprocessing,machinelearning,andbeyond,graphpartitioningprovidesawaytooptimizeresourceutilizationandimprovetheperformanceofcomplexcomputationaltasks.Asresearchinthisfieldcontinues,wecanexpecttoseefurtheradvancesandapplicationsthatmakeuseofthisimportanttool.Oneareawheregraphpartitioninghasshowngreatpotentialisinthefieldofdistributedcomputing.Withtheriseofcloudcomputinganddistributedsystems,theabilitytopartitionlargegraphsintosmallerpiecesthatcanbeprocessedindependentlyinparallelhasbecomeincreasinglyimportant.Distributedgraphpartitioningalgorithmsaredesignedtodividealargegraphintosmallersubgraphsthatcanbeprocessedinparallelondifferentcomputingnodes,thusreducingtheoveralltimerequiredtoprocessthegraph.

Anotherareawheregraphpartitioninghasfoundbroadapplicationisinthefieldofmachinelearning.Modernmachinelearningalgorithmsareoftenbasedongraphicalmodels,whichrepresentcomplexrelationshipsbetweenvariablesasgraphs.Graphpartitioningplaysacrucialroleinoptimizingtheperformanceofthesealgorithmsbydividingthegraphintosmallersubgraphsthatcanbeprocessedinparallel.Thiscanleadtosignificantimprovementsinthespeedandefficiencyofthelearningprocess.

Inadditiontomachinelearning,graphpartitioninghasalsofoundapplicationinvariousot

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論