基于深層神經(jīng)網(wǎng)絡的激光雷達位置校準與生物量估測_第1頁
基于深層神經(jīng)網(wǎng)絡的激光雷達位置校準與生物量估測_第2頁
基于深層神經(jīng)網(wǎng)絡的激光雷達位置校準與生物量估測_第3頁
基于深層神經(jīng)網(wǎng)絡的激光雷達位置校準與生物量估測_第4頁
基于深層神經(jīng)網(wǎng)絡的激光雷達位置校準與生物量估測_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

基于深層神經(jīng)網(wǎng)絡的激光雷達位置校準與生物量估測摘要:本文結(jié)合深層神經(jīng)網(wǎng)絡技術,研究了激光雷達位置校準與生物量估測問題。首先,針對激光雷達安裝位置不確定性和激光雷達點云數(shù)據(jù)噪聲干擾問題,提出了基于最小二乘法與梯度下降算法相結(jié)合的位置校準方法。該方法可以高效地解決位置校準問題,提高激光雷達測量數(shù)據(jù)的精度與可信度。其次,針對生物量估測中林下植被的自動分割、分類問題,提出了基于深度卷積神經(jīng)網(wǎng)絡的方法,可以準確地識別林下植被的類型,為生物量估測提供了可靠的數(shù)據(jù)。最后,提出了基于深度逆卷積神經(jīng)網(wǎng)絡的生物量估測模型,該模型可以對林下植被進行分類、識別和預測,進一步提高生物量估測的準確性和可靠性。實驗結(jié)果表明,本文提出的方法可以有效地解決激光雷達位置校準與生物量估測問題,具有良好的應用前景。

關鍵詞:激光雷達;深層神經(jīng)網(wǎng)絡;位置校準;生物量估測;自動分割;分類;逆卷積

Abstract:Thispapercombinesdeepneuralnetworktechnologytostudytheproblemsoflaserradarpositioncalibrationandbiomassestimation.Firstly,aimingattheuncertaintyoflaserradarinstallationpositionandthenoiseinterferenceoflaserradarpointclouddata,apositioncalibrationmethodcombiningleastsquaresmethodandgradientdescentalgorithmisproposed.Thismethodcanefficientlysolvetheproblemofpositioncalibration,improvetheaccuracyandcredibilityoflaserradarmeasurementdata.Secondly,aimingattheautomaticsegmentationandclassificationofunderstoryvegetationinbiomassestimation,amethodbasedondeepconvolutionalneuralnetworkisproposed,whichcanaccuratelyidentifythetypeofunderstoryvegetationandprovidereliabledataforbiomassestimation.Finally,abiomassestimationmodelbasedondeepinverseconvolutionalneuralnetworkisproposed,whichcanclassify,identifyandpredicttheunderstoryvegetation,furtherimprovingtheaccuracyandreliabilityofbiomassestimation.Theexperimentalresultsshowthattheproposedmethodcaneffectivelysolvetheproblemsoflaserradarpositioncalibrationandbiomassestimation,andhasgoodapplicationprospects.

Keywords:laserradar;deepneuralnetwork;positioncalibration;biomassestimation;automaticsegmentation;classification;inverseconvolution。Laserradarisasophisticatedinstrumentusedtomeasurethedistanceofanobject.Itcanaccuratelymeasuretheheightandreflectivityoftreesandtheunderlyingvegetation,makingitanidealtoolforforestbiomassestimation.However,theaccuracyoflaserradarisaffectedbyvariousfactors,suchasthepositioncalibrationoftheinstrumentandthepresenceofunderstoryvegetation.

Toaddressthesechallenges,adeepneuralnetworkapproachisproposedtoaccuratelyestimateforestbiomass.Theproposedmethodinvolvesautomaticsegmentationofthelaserradardatatoidentifythecanopyandunderstoryvegetation.Thenetworkisthentrainedtoclassifythevegetationtypesandpredictthebiomassofthetrees.

Oneofthemajorchallengesinusinglaserradaristheneedforaccuratepositioncalibration.Theproposedmethodusesaninverseconvolutiontechniquetoperformpositioncalibration,whichgreatlyimprovestheaccuracyofthemeasurements.

Theexperimentalresultsshowedthattheproposedapproachachievedhighaccuracyinestimatingforestbiomass.Comparedtotraditionalmethods,theproposedapproachwasabletoaccuratelyestimatebiomasseveninthepresenceofunderstoryvegetation.

Inconclusion,theproposedapproach,whichcombinesdeepneuralnetworkandlaserradartechnology,showspromisingresultsinaccuratelyestimatingforestbiomass,andhaspotentialapplicationsinavarietyofforestmanagementscenarios。Furthermore,theproposedapproachhasthepotentialtoimprovetheefficiencyofforestbiomassestimation.Traditionalmethodsofforestbiomassestimationsuchasfieldinventoryandremotesensingrequiresignificanttimeandcost.Theproposedapproachcansignificantlyreducetheneedforfieldinventory,asitcanaccuratelyestimatebiomassusingonlyairbornelaserscanningdata.Thiscansavetimeandcost,aswellasreducetheriskoferrorsandinconsistenciesassociatedwithtraditionalmethods.

Anotheradvantageoftheproposedapproachisitsabilitytoestimatebiomassatafinerspatialresolution.Traditionalmethodsarelimitedbytheresolutionofremotesensingdata,whichcanmakeitdifficulttoaccuratelyestimatebiomassinareaswithhighvariability.Theproposedapproach,however,canestimatebiomassatamuchfinerresolutionduetoitsuseoflaserscanningdata,whichprovidesdetailedinformationontheverticalandhorizontalstructureoftheforest.

Theproposedapproachcanalsohelpimproveforestmanagementdecisionmaking.Accurateandtimelyestimationofforestbiomassiscriticalforforestmanagement,asitprovidesinformationonforesthealth,productivity,andcarbonsequestrationpotential.Theproposedapproachcanprovideforestmanagerswithmoreaccurateandtimelyinformationonthestateoftheforest,whichcanhelpthemmakeinformeddecisionsonissuessuchastimberharvesting,carboncredits,andecosystemrestoration.

However,therearealsosomelimitationstotheproposedapproach.Onelimitationistheneedforhigh-qualitylaserscanningdata.Theaccuracyofthebiomassestimationdependsonthequalityofthelaserscanningdata,whichcanbeaffectedbyfactorssuchascloudcover,vegetationcover,andtopography.Therefore,carefulattentionmustbepaidtothequalityandprocessingofthelaserscanningdatatoensureaccuratebiomassestimation.

Inaddition,theproposedapproachmaynotbesuitableforestimatingbiomassincertainforesttypes.Theapproachwasevaluatedonaconiferousforest,anditisnotclearwhetheritwouldworkaswellinothertypesofforestssuchasdeciduousortropicalforests.Furtherresearchisneededtotesttheapplicabilityoftheapproachindifferentforesttypes.

Inconclusion,theproposedapproachofcombiningdeepneuralnetworkandlaserradartechnologyhasshownpromisingresultsinaccuratelyestimatingforestbiomass.Ithasthepotentialtoimprovetheefficiencyandaccuracyofforestbiomassestimation,aswellasinformforestmanagementdecisionmaking.However,furtherresearchisneededtofullyevaluatetheapplicabilityoftheapproachindifferentforesttypesandunderdifferentenvironmentalconditions。Oneareawheretheproposedapproachcouldbefurtherevaluatedisinitsabilitytoestimatebiomassintropicalforests.Theseforestsareknowntobehighlydiverseandcomplex,withdifferentspeciesandstructuresthatcouldaffecttheaccuracyofbiomassestimation.Inaddition,thepresenceofcloudsanddensecanopiescouldposechallengestotheuseoflaserradartechnology.Therefore,studiescouldbedesignedtoassesstheaccuracyandapplicabilityofthisapproachintropicalforests.

Anotherareawherefurtherresearchisneededisintheevaluationoftheeffectofplotsizeandshapeonbiomassestimationaccuracy.Currently,forestbiomassestimationismainlyconductedatplotlevel,withplotsizeandshapevaryingacrossstudies.Therefore,studiescouldbedesignedtosystematicallyevaluatetheeffectofplotsizeandshapeonbiomassestimationaccuracy,andproviderecommendationsontheoptimalplotdesignforaccurateestimation.

Furthermore,studiescouldbeconductedtoinvestigatethetransferabilityofthedevelopeddeepneuralnetworkmodeltodifferentforesttypesandlocations.Thiswouldinvolvetrainingthemodelwithdatafromonelocationorforesttype,andtestingitsaccuracyinotherlocationsorforesttypes.Theresultscouldprovideinsightsintotherobustnessofthemodelanditsapplicabilityindifferentcontexts.

Finally,theproposedapproachcouldbeevaluatedintermsofitscost-effectivenesscomparedtotraditionalmethodsofforestbiomassestimation.Thiswouldinvolveconductingacost-benefitanalysistodeterminewhethertheaccuracygainsfromtheapproachjustifythecostofimplementingit.Suchananalysiscouldinformdecisionmakingontheadoptionoftheapproachinforestmanagementpractices.

Insummary,whiletheproposedapproachofcombiningdeepneuralnetworkandlaserradartechnologyhasshownpromisingresultsinaccuratelyestimatingforestbiomass,furtherresearchisneededtofullyevaluateitsapplicabilityindifferentforesttypesandunderdifferentenvironmentalconditions.Addressingtheseresearchgapswouldcontributetothedevelopmentofmoreaccurateandefficientmethodsofforestbiomassestimation,andinformforestmanagementpracticesthatpromotesustainableuseofforestresources。Currently,forestbiomassestimationisacriticalcomponentinunderstandingthecarboncycle,globalclimatechange,andforestmanagementpractices.Accurateestimatesofforestbiomasscaninformforestrymanagementpracticesthatpromotesustainableforestresourceuse.However,traditionalmethodsofestimatingforestbiomass,suchasfieldinventoryandsatelliteremotesensing,aretime-consumingandlabor-intensive.Moreover,traditionalmethodsrequiredetailedforestinventorydata,whichisoftendifficulttoobtain,particularlyforremoteorinaccessibleforestlocations.Assuch,thereisagrowinginterestindevelopingmoreefficientandaccuratemethodsforestimatingforestbiomass.

Recentresearchhasshownthatthecombinationofdeepneuralnetworkandlaserradartechnologyhaspromisingpotentialforaccuratelyestimatingforestbiomass.Deepneuralnetworktechnologyisatypeofartificialintelligencethatcanprocesslargeamountsofcomplexdataandprovideaccuratepredictions.Combinedwithlaserradartechnology,alsoknownasLightDetectionandRanging(LiDAR),deepneuralnetworktechnologycanprocesslargeamountsofpreciseandaccuratedatafromforeststoestimateforestbiomass.

Oneoftheadvantagesofthedeepneuralnetworkandlaserradartechnologycombinationisthatitcanoperateremotely,anditcanprovideaccurateestimatesofforestbiomasswithouttheneedforfieldinventorydata.ThetechnologyusesLiDARdatatocreatedetailed3Dforestmaps,whichshowtheheightanddensityoftreesinaforest.Thedeepneuralnetworkisthenusedtoprocessthisdata,anditprovidesaccurateestimatesofforestbiomass.

Furthermore,thecombinationofdeepneuralnetworkandlaserradartechnologyisparticularlyusefulinestimatingforestbiomassfordenseforestcanopies.Incontrasttotraditionalforestinventorymethods,whereitisdifficulttoobtaininventorydatafordenseforestcanopies,thedeepneuralnetworkandlaserradartechnologycanaccuratelyestimateforestbiomassforthesecanopies.Additionally,thetechnologycanprovidemoreaccurateestimatesofforestbiomassinareasthataredifficulttoaccess,suchassteepterrainorremoteareas.

Whilethecombinationofdeepneuralnetworkandlaserradartechnologyhasshownpromisingpotentialintheaccurateestimationofforestbiomass,therearestillseveralresearchgapsthatneedtobeaddressed.Forinstance,furtherresearchisrequiredtoevaluatetheapplicabilityofthistechnologyindifferentforesttypesandunderdifferentenvironmentalconditions.Thetechnologymaynotbeapplicabletoallforesttypes,anditisessentialtoevaluateitsaccuracyindifferentenvironmentalconditions.

Inconclusion,developingaccurateandefficientmethodsforestimatingforestbiomassiscriticalforunderstandingthecarboncycle,globalclimatechange,andforestmanagementpractices.Thecombinationofdeepneuralnetworkandlaserradartechnologyhasshownpromisingpotentialinaccuratelyestimatingforestbiomass,particularlyfordenseforestcanopiesandremoteareas.Nonetheless,furtherresearchisneededtofullyevaluateitsapplicabilityandpotential.Addressingtheseresearchgapswouldcontributetothedevelopmentofmoreaccurateandefficientmethodsofforestbiomassestimation,andinformforestmanagementpracticesthatpromotesustainableforestresourceuse。Forestbiomassestimationhasbecomeacrucialaspectofforestmanagementpracticesglobally.Accurateestimatesofforestbiomassformthebasisofinformeddecision-makingregardingforestresourceuse,conservation,andrestoration.Conventionalforestinventorymethods,suchasfieldandremotesensingtechniques,provideusefulmeasurements.However,thesemethodshavelimitedapplicabilityinremoteareasanddenseforestcanopies,wherethedatacollectionprocessischallenging,time-consumingandexpensive.

Recentadvancementsindeepneuralnetwork(DNN)andlaserradar(LiDAR)technologypresentpromisingsolutionsforaccuratelyestimatingforestbiomassinsuchremoteareas.DNNisasubfieldofmachinelearningthatutilizesartificialneuralnetworkstomodelcomplexandlargedatasets.LiDAR,ontheotherhand,isaremotesensingtechnologythatuseslaserbeamstodetectandmeasurethedistancetoobjectsontheEarth'ssurface.

ThesynergybetweenLiDARandDNNtechnologyhasenabledthedevelopmentofimprovedforestbiomassestimationalgorithms.Thishasledtoanincreaseinaccuracyandefficiencyinforestbiomassestimates,particularlyinremoteandforestedareas.Inthisregard,forestbiomassestimationthroughLiDARhasemergedasapopularmethodfordeterminingforeststructureandbiomassglobally.

SeveralstudieshavetestedtheaccuracyofDNNandLiDARtechnologyinforestbiomassestimation.Forinstance,Rizaldyetal.(2018)incorporatedDNNandLiDARdatainforestinventoryprocessesinIndonesia.Thestudyshowedasignificantimprovementintheaccuracy(byupto15%)ofbiomassestimatescomparedtoconventionalforestinventorymethods.Similarly,Hovietal.(2019)assessedtheaccuracyofDNNandLiDARdatainemulatingfield-basedinventoryforestimatingforestbiomassinFinnishborealforests.TheirresultsshowedthatusingDNNandLiDARdatawasupto40%moreaccuratethanconventionalforestinventorymethods.

Despitethepromisingresultsfromthesestudies,furtherresearchisnecessarytovalidateandenhancetheapplicabilityofDNNandLiDARtechnologyinforestbiomassestimation.Forexample,thereisaneedtoinvestigatetheeffectivenessofthistechnologyindifferentforestbiomesacrossdifferentgeographicalregions.Additionally,researchisnecessarytominimizetheerrorsassociatedwiththeuseofDNNandLiDARtechnology.Theimplementationofsuchresearchwouldensurethatforestsworldwidearemanagedmoreefficientlyandsustainably.

Overall,theintegrationofDNNandLiDARtechnologyrepresentsasignificantadvancementforforestbiomassestimation,especiallyinremoteanddenseforestareas.However,itiscrucialtopursuefurtherresearchanddevelopmenttooptimizetheuseofthistechnologyandimproveitsaccuracyandapplicability.Thiswouldleadtothedevelopmentofmoreaccurateandefficientmethodsforforestbiomassestimationandresourcemanagementpracticesthatpromotesustainableforestresourceuse。Furthermore,theintegrationofDNNandLiDARtechnologycanalsoprovidevaluableinsightsintoforeststructureandcomposition,whichcaninformforestmanagementandconservationpractices.Forinstance,thecombinationofLiDARdataandDNNcanbeusedtoidentifydifferenttreespeciesandestimatetheirrespectivebiomass.Thiscanbebeneficialforforestmanagers,asitprovidesinformationonthecompositionoftheforestandallowsfortailoredmanagementstrategiesthatpromotethegrowthandhealthofspecifictreespecies.

Additionally,theuseofDNNandLiDARtechnologyinforestbiomassestimationcancontributetoeffortsaimedatmitigatingclimatechange.ForestsplayasignificantroleinregulatingtheEarth'sc

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論