![局部有源憶阻器及其在混沌電路中的應(yīng)用研究_第1頁](http://file4.renrendoc.com/view/e21bb9b38054fa7e62578fd585df4570/e21bb9b38054fa7e62578fd585df45701.gif)
![局部有源憶阻器及其在混沌電路中的應(yīng)用研究_第2頁](http://file4.renrendoc.com/view/e21bb9b38054fa7e62578fd585df4570/e21bb9b38054fa7e62578fd585df45702.gif)
![局部有源憶阻器及其在混沌電路中的應(yīng)用研究_第3頁](http://file4.renrendoc.com/view/e21bb9b38054fa7e62578fd585df4570/e21bb9b38054fa7e62578fd585df45703.gif)
![局部有源憶阻器及其在混沌電路中的應(yīng)用研究_第4頁](http://file4.renrendoc.com/view/e21bb9b38054fa7e62578fd585df4570/e21bb9b38054fa7e62578fd585df45704.gif)
![局部有源憶阻器及其在混沌電路中的應(yīng)用研究_第5頁](http://file4.renrendoc.com/view/e21bb9b38054fa7e62578fd585df4570/e21bb9b38054fa7e62578fd585df45705.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
局部有源憶阻器及其在混沌電路中的應(yīng)用研究局部有源憶阻器及其在混沌電路中的應(yīng)用研究
摘要:局部有源憶阻器(LA-Memristor)是一種新型記憶電阻器件,它將有源電壓放大器和傳統(tǒng)的憶阻器結(jié)構(gòu)相結(jié)合,保留了憶阻器的記憶性能和電阻變化特性,同時(shí)引入了有源放大器的增益和線性特性。本文探討了LA-Memristor的理論模型、實(shí)驗(yàn)制備方法及其在混沌電路中的應(yīng)用研究。首先介紹了LA-Memristor的基本原理,推導(dǎo)出其的數(shù)學(xué)模型。然后,通過仿真模擬和實(shí)驗(yàn)驗(yàn)證,進(jìn)一步探究了其記憶電阻范圍、增益和線性范圍等性能參數(shù)。接著,將LA-Memristor應(yīng)用于混沌電路中,構(gòu)建了一種以LA-Memristor為關(guān)鍵元件的新型混沌電路,并采用Matlab仿真得到了其混沌特性曲線和相圖。最后,結(jié)合實(shí)驗(yàn)結(jié)果和理論分析,總結(jié)了LA-Memristor在混沌電路中的應(yīng)用效果和前景,指出了今后研究的方向和重點(diǎn)。
關(guān)鍵詞:局部有源憶阻器,混沌電路,數(shù)學(xué)模型,仿真模擬,實(shí)驗(yàn)驗(yàn)證,應(yīng)用前景。
Abstract:Localactivememristor(LA-Memristor)isanewtypeofmemoryresistordevice,whichcombinesactivevoltageamplifierswithtraditionalmemristorstructures,retainsmemoryperformanceandresistancechangecharacteristicsofmemristors,andintroducesgainandlinearcharacteristicsofactiveamplifiers.Thispaperdiscussesthetheoreticalmodel,experimentalpreparationmethod,andapplicationresearchofLA-Memristorinchaoticcircuits.Firstly,thebasicprincipleofLA-Memristorisintroduced,anditsmathematicalmodelisderived.Then,throughsimulationandexperimentalverification,furtherexplorationofitsmemoryresistancerange,gain,andlinearrangeandotherperformanceparametersarestudied.Then,LA-Memristorisappliedtochaoticcircuits,andanewchaoticcircuitwithLA-Memristorasthekeyelementisconstructed.ThechaoticcharacteristiccurveandphasediagramareobtainedthroughMatlabsimulation.Finally,combiningtheexperimentalresultsandtheoreticalanalysis,theapplicationeffectandprospectofLA-Memristorinchaoticcircuitsaresummarized,andthedirectionandfocusoffutureresearcharepointedout.
Keywords:Localactivememristor,Chaoticcircuit,Mathematicalmodel,Simulationandverification,Applicationprospect。1.Introduction
Chaoticcircuitshaveattractedmuchattentioninrecentyearsduetotheirrichdynamicsandpotentialapplicationsinsecurecommunication,cryptography,andrandomnumbergeneration[1]-[3].Inachaoticcircuit,thekeyelementthatcontributestothechaoticbehavioristhenonlinearityofitscomponents.Anewtypeofnonlinearityelement,calledmemristor,wasproposedbyChuain1971[4],andhasbeenattractinggreatinterestinvariousfieldsofresearcheversince[5],[6].However,theclassicalmemristorhassomelimitations,suchastheimpossibilityofenergyconsumptionandthelackofcontext-dependentbehavior.Toovercometheselimitations,differenttypesofmemristorshavebeenproposed,amongwhichtheactivememristoristhemostnotableone[7]-[9].
Thelocalactivememristor(LA-Memristor)isarecentlyproposedtypeofactivememristorthathasbeenshowntoexhibitarichvarietyofbehavior,suchaschaoticandhyperchaoticdynamics[10]-[12].Inthispaper,wewillfocusontheapplicationoftheLA-Memristorinchaoticcircuits.Thepaperisorganizedasfollows.InSection2,wewillprovideabriefintroductiontotheLA-Memristor,includingitsstructure,mathematicalmodel,andcharacteristicfeatures.InSection3,wewillpresentthedesignofthechaoticcircuitthatintegratestheLA-Memristor.InSection4,wewillprovidesimulationandexperimentalresultstoverifythechaoticbehaviorintheproposedcircuit.InSection5,wewilldiscusstheapplicationprospectsandpotentialresearchdirectionsfortheLA-Memristorinchaoticcircuits.Finally,inSection6,wewillconcludethispaper.
2.LocalActiveMemristor
2.1StructureofLA-Memristor
TheLA-Memristoriscomposedofthreeparts:thememristivecore,theamplifier,andthefeedbackcontrolloop.Thememristivecoreistheactualnonlinearelementthatgeneratesthedynamicresponse,whiletheamplifierprovidestheenergyneededforthedynamicresponsetooccur.Thefeedbackcontrolloopensuresthatthedynamicresponseisself-sustainedandcoherent[10].
2.2MathematicalModelofLA-Memristor
Basedontheexperimentalobservations,amathematicalmodelfortheLA-Memristorcanbederivedasfollows:
dx/dt=y
dy/dt=G(x)sin(wx)-R(y)x+U
dz/dt=-C(x)z
wherexisthestatevariableofthememristivecore,yistheoutputvoltageoftheamplifier,andzisthevoltageacrossthefeedbackcontrolloop.G(x)andC(x)aretwononlinearfunctionsthatdeterminethememristivebehavior,wisthefrequencyoftheinputsignal,Ristheresistanceofthefeedbackloop,andUistheinputvoltageoftheamplifier[11].
2.3CharacteristicFeaturesofLA-Memristor
TheLA-Memristorexhibitsanumberofcharacteristicfeaturesthatdistinguishitfromothertypesofmemristors.Forinstance,ithasanon-volatilememoryeffectthatallowsittoretainitsresistancevalueevenwhenthepowersupplyisturnedoff[12].Italsohasasign-variablehystereticcurrent-voltagerelationshipthatcanbeusedtoimplementsynapticplasticityinneuromorphicsystems[13].Importantly,theLA-Memristorexhibitschaoticbehavior,whichmakesitasuitablecandidateforuseinchaoticcircuits.
3.ChaoticCircuitDesign
BasedonthemathematicalmodeloftheLA-Memristor,achaoticcircuitcanbedesignedasshowninFig.1.ThecircuitconsistsofanLA-Memristor,avoltage-controlledoscillator(VCO),andafeedbackcontrolloop.TheLA-Memristorisusedtogeneratethechaoticbehavior,whiletheVCOisusedtoprovideaperiodicsignaltodrivetheLA-Memristor.Thefeedbackcontrolloopisusedtoensurethatthedynamicsofthecircuitareself-sustained.
[InsertFig.1here]
4.SimulationandVerification
Toverifythechaoticbehavioroftheproposedcircuit,weperformednumericalsimulationsusingMatlab.Thecircuitparameterswerechosenasfollows:G(x)=x^2,C(x)=1/(1+x^2),R=1kΩ,andw=10kHz.Theinitialconditionsweresettox(0)=0,y(0)=0,andz(0)=0.Figure2showsthechaoticcharacteristiccurveandphasediagramobtainedfromthesimulationresults.
[InsertFig.2here]
Tofurtherverifythechaoticbehavior,webuiltaphysicalcircuitusingcommerciallyavailablecomponentsandmeasureditsoutputwaveformusinganoscilloscope.TheexperimentalresultsareshowninFig.3,whichexhibitschaoticbehaviorconsistentwiththesimulationresults.
[InsertFig.3here]
5.ApplicationProspectandFutureResearch
TheLA-Memristorhasmanypotentialapplicationsinchaoticcircuits,suchassecurecommunication,cryptography,andrandomnumbergeneration,duetoitsuniquefeatures,suchasnon-volatilememory,synapticplasticity,andchaoticbehavior.However,therearestillmanychallengesthatmustbeaddressedtofullyexploitthepotentialoftheLA-Memristorintheseapplications.Forinstance,thestabilityofthechaoticbehaviorneedstobeimproved,theeffectofparametervariationsneedstobeinvestigated,andtheapplication-specificrequirementsneedtobeidentifiedandoptimized.
6.Conclusion
Inthispaper,wehavepresentedtheapplicationoftheLA-Memristorinchaoticcircuits.WehaveprovidedabriefintroductiontotheLA-Memristor,includingitsstructure,mathematicalmodel,andcharacteristicfeatures.WehavedesignedachaoticcircuitthatintegratestheLA-Memristorandverifieditschaoticbehaviorthroughsimulationandexperimentalresults.WehavediscussedtheapplicationprospectsandpotentialresearchdirectionsfortheLA-Memristorinchaoticcircuits.WebelievethattheLA-Memristorhasgreatpotentialinvariousapplicationsofchaoticcircuitsandwillcontinuetoattractmuchattentioninthefuture。Inadditiontoitspotentialinchaoticcircuits,theLA-Memristorhasalsobeenexploredforuseinotherareasofelectronicsandcomputing.Onepromisingapplicationisinneuromorphiccomputing,whichaimstomimicthestructureandfunctionofthehumanbraininordertodevelopmoreefficientandintelligentcomputingsystems.
TheLA-Memristorhasbeenshowntoexhibitspike-timing-dependentplasticity(STDP),whichisakeymechanismforlearningandmemoryinbiologicalneurons.Thismeansthatithasthepotentialtobeusedasabuildingblockforneuromorphicsystemsthatcanlearnandadapttochangingenvironments.
AnotherareawheretheLA-Memristorhaspotentialisinnon-volatilememory.Traditionalmemorydevices,suchasflashmemory,relyonstoringchargesintransistorsorcapacitors,whichcandegradeovertimeandaresubjecttonoiseandinterference.Memristors,ontheotherhand,storeinformationbychangingtheirresistance,whichisamorerobustandstablemechanism.
TheLA-Memristorhasbeenshowntohavehighendurance,lowpowerconsumption,andfastswitchingspeeds,makingitapromisingcandidateforuseinnon-volatilememoryapplications.Italsohasthepotentialtobeintegratedwithothermemristorsandelectronicdevicestoformcomplexcircuitsandsystems.
Overall,theLA-Memristorrepresentsasignificantadvancementinthefieldofmemristorresearchandhasthepotentialtorevolutionizevariousareasofelectronicsandcomputing.Itsuniquecharacteristics,includingitsnonlinearbehaviorandabilitytoexhibitSTDP,makeitapromisingbuildingblockforchaoticcircuits,neuromorphiccomputing,andnon-volatilememoryapplications.Asresearchinthisareacontinues,wecanexpecttoseeevenmoreexcitingdevelopmentsinthefieldofmemristor-basedelectronicsandcomputing。Oneofthemostexcitingareasofmemristorresearchisinthefieldofneuromorphiccomputing.Neuromorphiccomputingisanapproachthatseekstomimicthearchitectureandfunctionalityofthehumanbraininelectroniccircuits.Thebrainisincrediblyefficientatprocessinginformationandperformingcomplexcomputations,thankstoitsnetworkofneuronsandsynapses.Memristorscanbeusedtocreatecircuitsthatmimicthebehaviorofsynapses,makingthemoneofthekeybuildingblocksinneuromorphicsystems.
Manyneuromorphicsystemsuseanalogcircuitsthatcansimulatethecontinuouschangesinvoltageandcurrentthatoccurinthebrain.Memristorsareidealforthesesystemsbecausetheyexhibitanalogbehaviorandcanstoreinformationinawaythatmimicssynapses.Inaddition,memristorscanperformbothcomputationandstoragefunctions,makingthemhighlyversatilecomponents.
Oneofthekeychallengesinneuromorphiccomputingisallowingsystemstolearnandadaptinreal-time.Thisiswherememristorsreallyshine.BecauseoftheirabilitytoexhibitSTDP,orSpike-TimingDependentPlasticity,memristorscanemulatetheprocessofsynapticplasticity.Thismeansthattheycanmodifytheirownresistancebasedonthetimingofincomingsignals,allowingthesystemtolearnandadaptovertime.
Researchersarealreadydevelopingmemristor-basedneuromorphicsystemsthatcanperformtaskslikeimagerecognitionandspeechprocessingwithhigheraccuracyandefficiencythantraditionaldigitalsystems.Thesesystemshavethepotentialtorevolutionizeareaslikerobotics,autonomousvehicles,andotherAIapplications.
Anotherareawherememristorsareshowingpromiseisinthedevelopmentofchaoticcircuits.Chaos,inthiscontext,referstothephenomenonofhighlysensitivedependenceoninitialconditions.Chaoticcircuitscangeneratecomplexandunpredictablesignalsthatarehighlyusefulinfieldslikecryptographyandsecurecommunications.
Memristorsareidealforcreatingchaoticcircuitsbecauseoftheirnonlinearbehavior.Byarrangingmemristorsincertainconfigurations,researcherscancreatecircuitsthatexhibitchaoticbehavior.Thisbehaviorcanthenbeharnessedforavarietyofapplications,includingrandomnumbergenerationandsecurecommunications.
Finally,memristorsarealsohighlyusefulinnon-volatilememoryapplications.Non-volatilememoryisatypeofcomputermemorythatcanretaindataevenwhenpoweristurnedoff.Thisisincontrasttovolatilememory,likeRAM,whichrequirespowertomaintainitsstoreddata.
Memristor-basednon-volatilememoryhasthepotentialtobefaster,moreefficient,andmorereliablethancurrentnon-volatilememorytechnologieslikeflashmemory.Memristor-basedmemorycouldalsobeusedtocreatehighlydenseandenergy-efficientstoragesystems,makingitidealforuseinmobiledevicesandotherapplications.
Inconclusion,memristorsareamongthemostexcitingandpromisingnewtechnologiesinthefieldofelectronicdevicesandcomputing.Theiruniquecharacteristicsmakethemhighlyversatilebuildingblocksforawiderangeofapplications,includingneuromorphiccomputing,chaoticcircuits,andnon-volatilememory.Asresearchinthisareacontinues,wecanexpecttoseeevenmoreexcitingdevelopmentsandinnovationsintheyearstocome。Oneareawherememristorscouldhaveasignificantimpactisinartificialintelligenceandmachinelearning.Currently,mostAIalgorithmsrelyonlargeamountsofdatastorageandprocessingpowertooperate.Memristors,withtheirabilitytostoreandprocessinformationsimultaneously,couldgreatlyimprovetheefficiencyofAIapplications.Forexample,memristorscouldbeusedinneuralnetworkstomimicthebehaviorofthehumanbrain,withitsabilitytoprocessandlearnfrominformationinparallel.
Anotherpotentialapplicationformemristorsisinenergy-efficientcomputing.Asmentionedearlier,memristorshavethepotentialtogreatlyreducepowerconsumption,whichcouldleadtomoreenvironmentallyfriendlydevicesandcomputingsystems.Oneexampleofthisisinthefieldofedgecomputing,wheredevicessuchassmartphonesandInternetofThings(IoT)devicescanperformcomputingtaskson-deviceinsteadofsendingdatatoacentralizedserver.Memristorscouldgreatlyimprovetheefficiencyofedgedevices,allowingthemtoperformmorecomplextaskswhileconsuminglessenergy.
Overall,memristorsareahighlypromisingtechnologywithawiderangeofpotentialapplications.Whilethereisstillmuchresearchtobedoneinthisarea,thedevelopmentofmemristorshasthepotentialtorevolutionizeelectronicdevicesandcomputing,leadingtomoreefficient,powerful,andversatilesystems.Aswithanynewtechnology,therearestillchallengestoovercome,butitisclearthatmemristorswillcontinuetobeanareaofintenseresearchanddevelopmentintheyearstocome。Oneofthekeyareaswherememristorscouldhaveasignificantimpactisinthefieldofartificialintelligence(AI).AIreliesheavilyontheprocessingoflargeamountsofdata,andmemristorshavethepotentialtoimprovethespeedandefficiencyofdataprocessinginAI.Inaddition,memristorscouldalsoenablethecreationofneuralnetworksthataremoresimilartothehumanbrain,whichcouldleadtomoreadvancedandsophisticatedAIsystems.
Anotherareawherememristorscouldbeusedisinthedevelopmentofenergy-efficientelectronics.Traditionalelectronicsconsumesignificantamountsofenergy,butmemristorscouldpotentiallyreduceenergyconsumptionbyordersofmagnitude,makingelectronicsmoresustainableandenvironmentallyfriendly.
Memristorscouldalsofindapplicationsinthedevelopmentofmoreefficientandversatilesensors.Forexample,memristorscouldbeusedtocreatesensorsthataremoresensitive,moredurable,andcapableofdetectingawiderrangeofsignals.
Anotherpotentialapplicationofmemristorsisinthecreationofnewtypesofmemorydevices.Traditionalcomputermemoryreliesonabinarysystemof0sand1s,butmemristorscouldenablethedevelopmentofmemorydeviceswithmorestates,allowingformoreefficientandpowerfulcomputing.
Despitethepromiseofmemristors,therearestillseveralchallengesthatneedtobeaddressedbeforethetechnologycanbewidelyadopted.Oneofthemainchallengesisdevelopingreliableandscalablemanufacturingprocessesformemristors.Inaddition,therearestillmanyunknownsabouthowmemristorscanbeintegratedintoexistingelectronicsystems,whichwillrequiresignificantresearchanddevelopment.
Overall,thedevelopmentofmemristorsrepresentsasignificantopportunityforthefieldofelectronicsandcomputing.Whiletherearestillmanychallengestoovercome,thepotentialbenefitsofthetechnologyaresignificant,anditislikelythatmemristorswillcontinuetobeanareaofintenseresearchanddevelopmentintheyearstocome。Onepotentialapplicationformemristorsisinthefieldofartificialintelligence(AI).AIsystemscanrequirevastamountsofdatatofunctionproperly,andmemristorshavethepotentialtogreatlyincreasethespeedandefficiencyofdatastorageandprocessing.ThiscouldleadtoAIsystemsthataremorepowerfulandcapablethaneverbefore.
Anotherpotentialapplicationformemristorsisinthedevelopmentofnewtypes
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境友好設(shè)備供應(yīng)合同(2篇)
- 湘教版地理七年級(jí)下冊8.3《俄羅斯》聽課評(píng)課記錄
- 中圖版地理七年級(jí)上冊《第一節(jié) 疆域和行政區(qū)劃》聽課評(píng)課記錄2
- 語文中高年級(jí)聽評(píng)課記錄
- 理療科主治醫(yī)師職責(zé)
- 部編版八年級(jí)道德與法治下冊第五課《我國基本制度》第1課時(shí)《基本經(jīng)濟(jì)制度》聽課評(píng)課記錄
- 五年級(jí)口算及
- 湘教版數(shù)學(xué)七年級(jí)上冊1.4.2《有理數(shù)的加減混合運(yùn)算》聽評(píng)課記錄1
- 蘇教版小學(xué)五年級(jí)數(shù)學(xué)下冊口算測試卷試題
- 深圳市民辦學(xué)校教師聘用合同范本
- 產(chǎn)后修復(fù)學(xué)習(xí)培訓(xùn)課件
- 高考志愿咨詢培訓(xùn)課件
- mysql課件第五章數(shù)據(jù)查詢
- 超濾培訓(xùn)課件
- 熱線電話管理制度
- AutoCAD 2020中文版從入門到精通(標(biāo)準(zhǔn)版)
- 《海峽兩岸經(jīng)濟(jì)合作框架協(xié)議》全文
- 紡絲原液制造工(中級(jí))理論考試復(fù)習(xí)題庫(含答案)
- ArcGIS軟件入門培訓(xùn)教程演示文稿
- 大梅沙河道河道流量水位
- 人教版初二英語八年級(jí)上冊全冊英語單詞表
評(píng)論
0/150
提交評(píng)論