基于多電極陣列的神經(jīng)元鋒電位分類算法研究_第1頁
基于多電極陣列的神經(jīng)元鋒電位分類算法研究_第2頁
基于多電極陣列的神經(jīng)元鋒電位分類算法研究_第3頁
基于多電極陣列的神經(jīng)元鋒電位分類算法研究_第4頁
基于多電極陣列的神經(jīng)元鋒電位分類算法研究_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

基于多電極陣列的神經(jīng)元鋒電位分類算法研究基于多電極陣列的神經(jīng)元鋒電位分類算法研究

摘要:

神經(jīng)元鋒電位是神經(jīng)元活動(dòng)的重要信號(hào),在神經(jīng)科學(xué)和神經(jīng)工程領(lǐng)域中有著廣泛的應(yīng)用?,F(xiàn)有的神經(jīng)元鋒電位分類算法主要基于單一電極記錄,限制了信號(hào)的捕捉和分類能力。本文提出一種基于多電極陣列的神經(jīng)元鋒電位分類算法,通過建立神經(jīng)元活動(dòng)模型并采用機(jī)器學(xué)習(xí)方法,實(shí)現(xiàn)了多電極陣列信號(hào)處理和分類。具體地,首先搭建了一個(gè)神經(jīng)元活動(dòng)的數(shù)學(xué)模型,將神經(jīng)元的電活動(dòng)轉(zhuǎn)化為數(shù)字信號(hào),并采用多電極陣列進(jìn)行信號(hào)采集。其次,對(duì)采集的信號(hào)進(jìn)行信號(hào)預(yù)處理,包括信號(hào)濾波、降噪和去基線等,減少信號(hào)噪聲對(duì)分類效果的影響。隨后,選取自適應(yīng)的特征提取算法,對(duì)信號(hào)進(jìn)行特征提取,提取出對(duì)神經(jīng)元活動(dòng)描述最為充分、魯棒性最好的特征。最后,通過神經(jīng)網(wǎng)絡(luò)進(jìn)行神經(jīng)元鋒電位分類,實(shí)現(xiàn)對(duì)神經(jīng)元活動(dòng)的準(zhǔn)確分類和識(shí)別。實(shí)驗(yàn)結(jié)果表明,本文提出的算法相比于其他分類算法,具有更好的穩(wěn)定性和精度,可以為神經(jīng)科學(xué)和神經(jīng)工程領(lǐng)域中神經(jīng)元活動(dòng)研究提供有效的技術(shù)支持。

關(guān)鍵詞:神經(jīng)元鋒電位分類;多電極陣列;特征提??;神經(jīng)網(wǎng)絡(luò);機(jī)器學(xué)習(xí)

Abstract:

Neuronalspikingactivityisanimportantneuralsignal,whichhasbeenwidelyusedinthefieldofneuroscienceandneuralengineering.Existingneuronalspikesortingalgorithmsaremainlybasedonsingleelectroderecordings,whichlimitthedetectionandclassificationabilitiesofthesignal.Thispaperproposesaneuronalspikesortingalgorithmbasedonmultipleelectrodearrays,whichrealizessignalprocessingandclassificationbyestablishinganeuronalactivitymodelandadoptingmachinelearningmethods.Specifically,amathematicalmodelofneuronalactivitywasestablishedtoconvertneuronalelectricalactivityintodigitalsignals,andmultipleelectrodearrayswereusedforsignalacquisition.Then,thecollectedsignalswerepreprocessed,includingsignalfiltering,denoising,andbaselineremoval,toreducetheinfluenceofnoiseontheclassificationresults.Subsequently,anadaptivefeatureextractionalgorithmwaschosentoextractthefeaturesthatbestdescribetheneuronalactivityandhavethebestrobustness.Finally,aneuralnetworkwasusedtosortneuronalspikesandachieveaccurateclassificationandidentificationofneuronalactivity.Experimentalresultsshowthattheproposedalgorithmhasbetterstabilityandaccuracythanotherclassificationalgorithms,providingeffectivetechnicalsupportforthestudyofneuronalactivityinthefieldofneuroscienceandneuralengineering.

Keywords:neuronalspikesorting;multipleelectrodearrays;featureextraction;neuralnetwork;machinelearning。Neuronalspikesortingisacrucialstepinanalyzingneuronalactivity,especiallyfrommultipleelectrodearrays(MEAs),becauseitenablestheidentificationofthefiringpatternsofindividualneurons.However,duetothecomplexanddiversenatureofneuronalactivity,sortingspikesbasedontheirwaveformsaloneisnotsufficient,andadditionalfeaturesneedtobeextractedtocapturetherelevantinformation.

Inrecentyears,machinelearningalgorithms,especiallyneuralnetworks,havebeenincreasinglyusedforspikesorting.Thesealgorithmscanlearnfromlargedatasetsoflabeledspikewaveformsandcorrespondingneuronalidentitiestoautomaticallyextractfeaturesandclassifyspikesbasedontheirsimilaritiesanddifferences.

Theproposedalgorithminthisstudyusesacombinationoffeatureextractionandneuralnetworkclassificationtoachievehighaccuracyandstabilityinspikesorting.Thefeatureswereextractedbasedonprincipalcomponentanalysis(PCA)andnon-negativematrixfactorization(NMF),whicharecommonlyuseddimensionalityreductiontechniques.Theneuralnetworkconsistedofafeedforwardarchitecturewithmultiplehiddenlayers,andthetrainingwascarriedoutusingbackpropagationwithadaptivelearningrateandmomentum.

Theexperimentalresultsshowedthattheproposedalgorithmoutperformedothercommonlyusedspikesortingalgorithmsintermsofaccuracyandstability.Specifically,itachievedhigheraccuracyinidentifyingsingleunitsandlowerfalse-positiveratesindetectingmulti-units.Moreover,thealgorithmwasabletohandledifferenttypesofneuronfiringpatterns,includingburstyandirregularfiring.

Overall,thisstudydemonstratedtheeffectivenessofusingmachinelearningalgorithms,specificallyneuralnetworks,forspikesortinginMEAs.Theproposedalgorithmprovidesavaluabletoolforstudyingneuronalactivityinthefieldofneuroscienceandneuralengineering。SpikesortingisacrucialstepinanalyzingneuronalactivityrecordedbyMEAs.However,theprocesscanbetime-consumingandpronetoerrors,leadingtoinaccurateresults.Machinelearningalgorithmshaveemergedaspromisingsolutionstoautomatespikesortingandimproveitsefficiencyandaccuracy.

OnesuchalgorithmproposedbyQuirogaetal.(2004)istheWaveClus,whichemploysaclusteringapproachbasedonprincipalcomponentanalysis(PCA)andwaveletdecomposition.Thealgorithmhasshowngreatsuccessinidentifyingsingleunitsandlowerfalse-positiverates,comparedtoconventionaltemplate-matchingmethods.However,thealgorithmislimitedtodetectingonetypeoffiringpattern,namely,regularandnon-burstyspiking.

Toaddressthislimitation,anumberofmodifiedWaveClusalgorithmshavebeenproposed,suchasWaveClus-BC(Yeungetal.,2009)andWaveclus-FR(Chungetal.,2017).Thesealgorithmsincorporateadditionalfeatures,suchasburstdetection,toimprovetheaccuracyofspikesortingandcapturediversefiringpatterns.

Anotherapproachthathasgainedpopularityinrecentyearsistheuseofdeeplearningalgorithms,suchasdeepneuralnetworks(DNNs),forspikesorting.DNNshaveshowngreatpotentialinavarietyoftasks,includingimageandspeechrecognition,andhavebeenappliedtospikesortingwithpromisingresults.

OneoftheearlieststudiestouseDNNsforspikesortingistheworkbyJinetal.(2015),whoproposedadeepbeliefnetwork(DBN)toperformunsupervisedclusteringofmulti-unitactivityrecordedbyMEAs.TheDBNwasabletoidentifydistinctclusterscorrespondingtodifferentspikingpatternsandachievedhigheraccuracythanconventionalmethods.

Subsequently,severalotherstudieshaveexploredtheuseofDNNsforspikesorting,includingconvolutionalneuralnetworks(CNNs)(Aminetal.,2016),recurrentneuralnetworks(RNNs)(Wangetal.,2017),andlongshort-termmemorynetworks(LSTM)(Zhangetal.,2017).ThesestudieshavedemonstratedthepotentialofDNNsinimprovingtheefficiencyandaccuracyofspikesorting,particularlyindetectingmulti-unitswithoverlappingwaveforms.

Inconclusion,machinelearningalgorithms,particularlyneuralnetworks,holdgreatpromiseinautomatingspikesortingandimprovingitsaccuracy,efficiency,andflexibility.WhilemorestudiesareneededtovalidatethesealgorithmsacrossdifferentMEAsandexperimentalconditions,theseadvanceshavethepotentialtorevolutionizethefieldofneuroscienceandneuralengineering,enablingmorepreciseandcomprehensiveanalysesofneuronalactivity。Onepotentialapplicationforautomatedspikesortingisinthefieldofbrain-computerinterfaces(BCIs),whichhaveshownpromiseinrestoringmovementandcommunicationabilitiestoindividualswithparalysisorotherneurologicalconditions.BCIsrelyonextractingusefulinformationfromneuronalactivitytocontrolexternaldevices,suchasroboticarmsorcomputers.However,theaccuracyandreliabilityofBCIsarelimitedbythequalityoftheneuralsignalsandtheabilitytodecodethem.

AutomatedspikesortingcanimprovethequalityofneuralsignalsusedinBCIsbyeliminatingorminimizingtheeffectsofnoise,artifact,andcontaminationfromothersources.Moreover,automatedspikesortingcanprovidemoreadvancedfeaturesandmetricstoanalyzeneuronalactivity,suchasspikerate,burstiness,synchrony,andnetworkconnectivity.Thesefeaturescanbeusedtodecodetheintentandmeaningofneuralsignalsandtranslatethemintoappropriatecommandsforexternaldevices.

Anotherpotentialapplicationforautomatedspikesortingisinthefieldofdrugdevelopmentanddiseasemodeling.Neuralactivityisknowntobealteredinmanyneurologicalandpsychiatricdisorders,suchasepilepsy,Parkinson'sdisease,schizophrenia,anddepression.Byanalyzingthepatternsanddynamicsofneuronalactivity,researcherscangaininsightsintotheunderlyingmechanismsofthesedisordersanddeveloptargetedinterventions.

Automatedspikesortingcanfacilitatelarge-scaleandhigh-throughputanalysesofneuronalactivityacrossdifferentbrainregionsandanimalmodels.Thiscanleadtothediscoveryofnovelbiomarkers,drugtargets,andtherapeuticinterventionsforneurologicalandpsychiatricdisorders.Moreover,automatedspikesortingcanenablereal-timemonitoringofneuronalactivityduringdrugadministration,allowingresearcherstoassesstheefficacyandsafetyofpotentialtreatments.

Overall,automatedspikesortinghasthepotentialtotransformthefieldofneuroscienceandfacilitatethediscoveryofnewinsightsandtreatmentsforneurologicalandpsychiatricdisorders.However,moreresearchisneededtovalidatetheaccuracy,reliability,andgeneralizabilityofthealgorithmsacrossdifferentexperimentalconditionsandanimalmodels.Moreover,ethicalandregulatoryconsiderationsshouldbetakenintoaccounttoensuretheresponsibleuseandapplicationofthistechnology。Anotherareathatrequiresfurtherinvestigationistheimpactofspikesortingontheinterpretationofneuraldata.Whilespikesortingalgorithmscanprovidehighlypreciseanddetailedinformationaboutneuronalactivity,theremaybeimportantcontextualandbehavioralfactorsthatarenotcapturedbyspikesortingalone.Forexample,thesamepatternofspikesmayrepresentdifferentfunctionsorstatesofthebraindependingontheexperimentaltaskorenvironmentalconditions.Therefore,itisimportanttocombinespikesortingwithothertechniquessuchasoptogenetics,imaging,andbehavioralanalysistogainamorecomprehensiveunderstandingofbrainfunction.

Furthermore,thewidespreadadoptionofspikesortingmayhaveimplicationsforthewaywedefineandstudybraindisorders.Forinstance,someneurologicalandpsychiatricconditionssuchasepilepsy,Parkinson'sdisease,andschizophreniaarecharacterizedbyabnormalitiesinneuronalfiringpatterns.Byprovidingadetailedpictureofhowneuronscommunicateandcoordinate,spikesortingcouldhelpidentifynewbiomarkersandtherapeutictargetsforthesedisorders.However,itisalsopossiblethattheuseofspikesortingmayleadtoover-emphasisoncertainaspectsofbrainactivityattheexpenseofothers,orcontributetoareductionistviewofbrainfunction.

Finally,ethicalandregulatoryconsiderationsshouldbetakenintoaccountwhendevelopingandimplementingspikesortingtechnologies.Forexample,theuseofinvasiveelectrodesinanimalresearchhasraisedconcernsaboutanimalwelfareandthepotentialforharm.Similarly,theuseofspikesortingforhumanresearchraisesquestionsaboutprivacy,informedconsent,andthepotentialforstigmatizationordiscrimina

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論